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Motivation

“Black box” model very popular in crypto

Attacker knows algorithm but only sees inputs/outputs

No information about secret key

Attacker cannot observe/influence the internal state

Clear since 1990’s that black boxes are a very optimistic assumption

Easy to mount side-channel attacks [Koc96; KJJ99]

Easy to mount fault attacks [BDL97; BS97]
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Motivation: Cost of Algorithmic Countermeasures

Combined runtime/area overheads [BBC+20]:

Profiled Power Analysis: 1− 5×
Di�erential Power Analysis: 5− 100×

Especially problematic for embedded devices:

Smart cards, root of trust silicon, . . .

Standardization e�ort by NIST: Lightweight Cryprography (LWC) [NIS18]

More performance than AES but same 128-bit security
Allow cheaper algorithmic countermeasures
Leakage resilience: Prevent physical attacks onmode-level
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Accumulated Interference

Previous analysis of LR o�en in bounded leakage model

Adversary can choose any leakage function with bounded range [DP08]

Each new primitive call leaks≤ λ bits→ simplification!

Fault attacks are not considered

This work:

More practical framework for evaluating leakage resilience

Closer fit to actual attacks (observable leakage)

Also captures fault attacks
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Accumulated Interference

Accumulated gain (AG) represents leakage and tampering

We bound leakage as the AG over time: AG(i)

More accurate bounds onAG(i) derived throughmeasurements

Suited for permutation-based cryptography

Discussion example: ASAKEY

Direct implications for the NIST LWC finalist ISAP [DEM+20]
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ASAKEY: Nonce-based Stream Encryption
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ASAKEY≈ encryption part of ISAP [DEM+20]

Nonce is absorbed bit by bit

Sponge-variant of GGM construction [GGM86]

Attacker observes at most 2 di�erent inputs under same key

5 / 10



Accumulated Interference
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Accumulated Interference: EstimatingAGATK(X, q, r)
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ATK ∈ {SPA, DPA, SFA, . . .}
X inputs to p
q evaluations of p per input
rmaximal number of Xi with the same inner part
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Accumulated Interference: EstimatingAGATK(X, q, r)

ISAPRK
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Accumulated Interference: EstimatingAGDPA(X, q, r)
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Evaluation Setup: Chipwhisperer-Lite with XMEGA128D4 target
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Implications for ASAKEY

Importance of construction is to bound r andmax(q)

ASAKEY only bounds r = 2

Helps against attacks like DPA, SFA, SIFA, . . .

max(q) unbounded

DFA still possible

In the paper: Strengthened ASAKEY

Boundsmax(q) to a small constant
Stateful scheme that steadily increases the nonce
Stores intermediate states during nonce absorption
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Conclusion

More realistic framework to model side-channel and fault attacks
for LR crypto

Introduced (strengthened) ASAKEY as a discussion example

Discussion of attacks like DPA, DFA, SFA, SIFA, . . .

Open: Better construction to boundmax(q)?
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Questions
ä
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