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Abstract

Cryptographic algorithms are commonly used to achieve security properties
such as confidentiality and authenticity of messages that are being sent over an
untrusted communication channel like the Internet. This is generally realized by
using a cryptographic key to (1) transform a plaintext into encrypted ciphertext
and (2) append an authentication tag to it.

The security of cryptographic algorithms is generally measured by the cost
of the best-known method for breaking its security properties in a (mostly)
black-box setting. In this setting, an attacker, besides having knowledge of
the algorithmic specification, can only observe its inputs/outputs that are not
required to be kept secret. An attacker may then use various analysis techniques
trying to break the algorithm’s security properties. In the most drastic case, an
attack achieves full key recovery, which usually breaks all security properties of a
cryptographic algorithm.

In the real world, cryptographic algorithms are deployed as implementations
on electronic devices that, depending on the concrete scenario, may allow an
attacker to gain physical access. In this setting, cryptographic implementations
find themselves in a more like gray-box setting that gives attackers the additional
capability to perform physical manipulations or to observe a device’s physical
properties. These improved capabilities can greatly simplify attacks on these
implementations, thus breaking their security properties. Providing effective
protection against such implementation attacks is of high importance for many
practical applications of cryptography and requires a deep understanding of the
possible attack vectors and defense techniques. Exactly this understanding is
constantly challenged by the evolution of cryptographic algorithms, implementa-
tion techniques, and attack strategies. In this thesis, we address this problem
by analyzing and advancing the current state of implementation security with
respect to both passive and active implementation attacks.

In the context of passive implementation attacks, we study power analysis
attacks on fairly new lattice-based cryptographic schemes, which serve as a
potential future replacement for currently used RSA/ECC-based schemes. We
present a power analysis attack on a lattice-based decryption scheme that allows
the extraction of entire private keys from a single power trace, even though
the construction of lattice-based cryptography makes such attacks particularly
challenging. We then show an improvement of this method that, while being
limited to certain applications of lattice-based encryption, requires a significantly
less powerful power analysis adversary.
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Abstract iv

In the context of active implementation attacks, we present exploitation
techniques for fault attacks that can circumvent various algorithmic defense
techniques that were previously believed to offer sufficient protection against
such attacks. We then further show the applicability of these attacks in the
context of authenticated encryption, a setting in which the successful application
of fault attacks is usually particularly difficult. Finally, we present a novel defense
technique that can provide effective and efficient protection against a large class
of active (and passive) implementation attacks.
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1
Introduction

Be alone with my thoughts? Near
on unachievable these days.

V - Cyberpunk 2077

Many aspects of today’s life are determined by information technology. Not
too long ago, globalized instantaneous communication, with all of its current
applications, was unthinkable. Yet today, most of us take this ability for granted
and do not necessarily (want to) consider the potential risks that come with
it. What is often a bit overlooked is the fact that technology does serve not
only the optional purpose of entertainment and convenience but also much more
vital purposes. Nowadays, critical services such as communication networks
or power grids are examples of complex systems consisting of a network of
interconnected devices, each of which plays a vital role in a system’s overall
functionality. Consequently, the integrity of such systems is not only determined
by a certain central processing endpoint but also relies on the integrity of all
of its components, very much in line with the famous quote: “A chain is only
as strong as its weakest link” – as it appears in Thomas Reid’s “Essays on the
Intellectual Powers of Man” from 1786.

One of the key measures to secure systems against outside threats is the usage
of secure communication mechanisms that can be realized via the proper use of
cryptography and key management. Given a shared key between communication
parties, cryptography can provide solutions that ensure confidentiality and au-
thenticity of messages that are being sent between the parties. Key management
is concerned with the proper generation, exchange, storage, or replacement of
keys during the lifetime of a system.

1



1.1. Contributions and Outline 2

Yet, even if a system features proper usage of cryptographic algorithms/keys
and is free of implementation errors, there are still additional threats. So-called
implementation attacks, including techniques such as physical side-channel or fault
analysis, allow attackers to extract sensitive information, such as cryptographic
keys, from physically accessible devices, which may then allow compromising the
system in that they play a role. A classic example of such an attack scenario are
smart cards that are used, e.g., to realize electronic payment or physical/digital
access control to critical infrastructure. In situations like these, cryptographic
secrets stored on these cards, if revealed to an attacker, could be misused
to issue fraudulent money transactions or to disturb the operation of critical
infrastructures like power grids or telecommunication. Additional examples
include electronic passports containing cryptographic keys for copy protection,
or access control mechanisms on personal devices (laptops or smartphones)
that, if circumvented, can result in an infringement of personal security and
privacy. The ability to implement cryptography offering security not only on
cryptographic level but also in the presence of implementation attacks is hence of
high importance for many practical applications of cryptography. To this end, in
this thesis, we analyze and advance the current state of implementation security
with respect to both, passive and active implementation attacks.

1.1 Contributions and Outline

This thesis starts with a brief introduction to cryptography and implementation
attacks. The core chapters of this thesis are split into two parts, covering
aspects of passive and active implementation attacks, respectively. We preface
each part with a more in-depth introduction on passive/active implementation
attacks that also covers some preliminaries of the presented contributions. The
scientific contributions of this thesis have all been published as peer-reviewed
articles at conferences of the field. In this thesis, the presentation of these
contributions mostly corresponds to the published versions. Their original
introduction and preliminary sections are adapted/modified to avoid redundant
text and to underline the connections between them. Additionally, the general
write-up was improved by revising various formulations and notations. We want
to point out that the order of authors on the corresponding published articles
does not necessarily reflect the order of contribution. Instead, and in line with a
statement of the American Mathematical Society1, the order of authors often
simply follows alphabetical order. The contribution of the author to each scientific
article is discussed in the following outline of the thesis. A conclusion, as well as
a complete list of publications and further collaborations, are given at the end of
this thesis.

1From: https://www.ams.org/profession/leaders/CultureStatement04.pdf: “In
most areas of mathematics, joint research is a sharing of ideas and skills that cannot be
attributed to the individuals separately. The roles of researchers are seldom differentiated (in
the way they are in laboratory sciences, for example). Determining which person contributed
which ideas is often meaningless because the ideas grow from complex discussions among all
partners.”

https://www.ams.org/profession/leaders/CultureStatement04.pdf
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Part I of this thesis is devoted to passive implementation attacks and begins
with a more in-depth introduction to the topic in Chapter 2.

In Chapter 3, we study the applicability of profiled power analysis on lattice-
based cryptography, which serves as a potential future replacement for current
RSA/ECC-based cryptography. More concretely, we demonstrate a power analysis
attack on implementations of lattice-based decryption operations that allow the
extraction of entire private keys, even if an attacker only gets to observe the power
trace of a single decryption operation. Compared to previous attacks targeting
RSA/ECC implementations, our attack setting is much more challenging since
the key is processed in larger chunks, which leads to much less information in
the power side channel.

This work was published at CHES 2017, and the author of this thesis has
mainly contributed to developing/improving the attack methodology, the execu-
tion of practical experiments, and the paper write-up.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. “Single-Trace
Side-Channel Attacks on Masked Lattice-Based Encryption.” In:
CHES. Vol. 10529. Lecture Notes in Computer Science. Springer,
2017, pp. 513–533.

In Chapter 4, we show an improvement of our previously developed attack method
that can recover ephemeral secrets during lattice-based encryption while requiring
a significantly less powerful power-analysis adversary. We also demonstrate the
practicality of this work on an off-the-shelf standard microprocessor.

This work was published at LATINCRYPT 2019, and the author of this thesis
has mainly contributed to developing/improving the attack methodology and the
paper write-up.

[PP19] Peter Pessl and Robert Primas. “More Practical Single-Trace At-
tacks on the Number Theoretic Transform.” In: LATINCRYPT.
Vol. 11774. Lecture Notes in Computer Science. Springer, 2019,
pp. 130–149.

Part II of this thesis is devoted to active implementation attacks and begins
with a more in-depth introduction to the topic in Chapter 5.

In Chapter 6, we present statistical ineffective fault attacks (SIFA), an exploitation
technique for fault attacks that is applicable in a wide variety of cryptographic
applications and particularly hard to protect against. SIFA allows an attacker to
infer information about cryptographic keys solely by analyzing the input/output
of faulted but ultimately still correct cryptographic computations. Consequently,
standard fault countermeasures like redundant computation cannot prevent this
type of attack. Due to its statistical nature, SIFA is also convenient from an
attacker’s perspective since only very limited knowledge about the attacked
device is required.
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This work was published at CHES 2018, and the author of this thesis has
mainly contributed to finding a theoretical model for the attack, the execution of
practical experiments, and the paper write-up.

[Dob+18b] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan
Mangard, Florian Mendel, and Robert Primas. “SIFA: Exploiting
Ineffective Fault Inductions on Symmetric Cryptography.” In: IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018.3 (2018), pp. 547–572.

In Chapter 7, we analyze the applicability of SIFA in the context of nonce-based
authenticated encryption schemes. While the application of many traditional
fault attack techniques is prohibited by the uniqueness of the nonce during
encryption and the built-in validation of data authenticity during decryption, we
show how SIFA can be used to mount successful key recovery attacks in such
a setting. In particular, we extend the idea of SIFA to target the initialization
performed in nonce-based authenticated encryption schemes, which provides the
attacker with an oracle on whether a fault was ineffective or not. We demonstrate
the practicality of our analysis by presenting concrete exemplary attack strategies
of SIFA targeting implementations of Keyak and Ketje.

This work was published at SAC 2018, and the author of this thesis has mainly
contributed to improving the attack methodology, the execution of practical
experiments, and the paper write-up.

[Dob+18c] Christoph Dobraunig, Stefan Mangard, Florian Mendel, and Robert
Primas. “Fault Attacks on Nonce-Based Authenticated Encryption:
Application to Keyak and Ketje.” In: SAC. Vol. 11349. Lecture
Notes in Computer Science. Springer, 2018, pp. 257–277.

In Chapter 8, we explore the capabilities of SIFA in the presence of masking
countermeasures that were previously believed to offer effective protection against
such attacks. More concretely, we show that fault inductions in the nonlinear
layer of masked cryptographic operations can indeed have the required effect
to allow key recovery via SIFA. These observations make SIFA an especially
interesting attack technique against real-world cryptographic devices that feature
protection mechanisms against both power and fault analysis.

This work was published at ASIACRYPT 2018, and the author of this thesis
has mainly contributed to the general idea of the paper, the execution of practical
experiments, and the paper write-up.

[Dob+18a] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Man-
gard, Florian Mendel, and Robert Primas. “Statistical Ineffective
Fault Attacks on Masked AES with Fault Countermeasures.” In:
ASIACRYPT (2). Vol. 11273. Lecture Notes in Computer Science.
Springer, 2018, pp. 315–342.

In Chapter 9, we present a novel algorithmic defense technique based on a
specific combination of masking, redundancy, and reversible computing, that can
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provide effective protection from SIFA, amongst other common fault attacks. On
top of that, our technique also allows the construction of masking schemes that
are efficient in terms of runtime and energy consumption, which makes them
particularly interesting for embedded applications where implementation attacks
are of great concern.

This work was published at CHES 2020, and the author of this thesis has
mainly contributed to the general idea of the paper, the execution of practical
experiments, and the paper write-up.

[Dae+20a] Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes
Groß, Florian Mendel, and Robert Primas. “Protecting against
Statistical Ineffective Fault Attacks.” In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020.3 (2020), pp. 508–543.

Other Contributions. Besides the contributions presented in this thesis, the
author of this thesis has also contributed to various other scientific works. These
other works include cryptographic hardware designs [SP20; Nag+22], as well as fur-
ther attack/defense techniques against implementation attacks [DMP22; Ham+21;
Vaf+22; KPP20]. Moreover, the author has contributed to various works on
formal verification of defense techniques [Gig+21; GPM21; GPM23; HPB21a;
Blo+22] or analysis of cryptographic algorithms/modes [DMP22; ENP19].

Some of the works could have also been additionally used as part of this
thesis. However, they were left out to allow this thesis to have a more specific
scope. Last but not least, the author was involved in the submission of the
authenticated encryption scheme Isap to the standardization effort of lightweight
cryptography by NIST [Dob+20], where it is currently competing in the final
round [NIS18]. A full list of the (so far) 20 peer-reviewed articles that have been
written in collaboration with 35 different co-authors can be found in Chapter 10.

1.2 A Brief Introduction to Cryptography

Cryptography is the theory and study of techniques behind secure communication
and is one of the key building blocks of all products, services, and devices
that build on information and communication technology. One of the most
widely known applications of cryptography is the encryption of messages using a
secret key, thereby ensuring their confidentiality while being transmitted over an
untrusted communication channel. Besides encryption, there exist many more
applications that make use of cryptography in one way or another. For example,
hash functions can be used to ensure message integrity, while digital signatures
or message authentication codes additionally ensure message authenticity. We
now give a brief overview of prominent cryptographic algorithms and their
applications. We organize our overview into two sections, symmetric cryptography,
and asymmetric cryptography, based on how cryptographic keys are used
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1.2.1 Symmetric Cryptography

Symmetric cryptography provides solutions for classical communication scenarios
in which communicating parties share a secret key that typically corresponds to
a string of 128 to 256 bits. For symmetric encryption, this key can be used in a
cipher by either party to (1) encrypt a message into ciphertext and (2) decrypt a
received ciphertext into the original message. The term symmetric refers to the
fact that anyone in possession of the key can use it to perform both encryption
and decryption, as illustrated in Figure 1.1a. One shortcoming of encryption
schemes is that they do not provide a way to check the integrity or authenticity
of messages. Hence, if an adversary on a communication channel does not only
observe but also modifies data, a receiver might not be able to tell if a ciphertext
(and the corresponding message) is trustworthy.

To overcome this problem, in practice, encryption is usually combined with
message authentication code (MAC) functions. A MAC function calculates an
additional check value, often also referred to as a tag, based on a message and a
secret key. This tag can then be appended to a message and allows the receiver
to verify if the message is unaltered and created by someone in possession of
a particular secret key. Since, in practice, encryption is almost always used in
tandem with MACs, there also exist dedicated authenticated encryption schemes
that offer an interface for this combined functionality. Some prominent examples
of authenticated encryption schemes that are frequently used for encrypting
Internet traffic are AES-GCM, AES-CCM and ChaCha20-Poly1305 [For07;
For15].

So far, all algorithms are described to be fully deterministic, i.e., same inputs
give the same outputs. In practice, however, it is desirable to prevent repeated
calls of cryptographic algorithms on the same inputs to result in the same outputs.
This is due to the fact that, e.g., repeated observation of the same ciphertext/tag
does leak some information about the plaintext. Hence, cryptographic algorithms
often also take an additional nonce as input that differs for every call and can be
sent along with a message/tag in plain.

If an application only requires message integrity, one can make use of a cryp-
tographic hash function, i.e., an unkeyed and one-way function that compresses
an arbitrarily large message into a fix-length hash (checksum). This hash can
then be sent alongside the original message to be recomputed and compared by
the receiver.

Over the last two decades, many different symmetric building blocks (ciphers,
MACs, compression functions, . . . ) have been proposed for various cryptographic
applications. One downside of this variety is the fact that usually, several of these
building blocks are needed to realize classical communication scenarios. This
comes with the cost of increased code size in software or chip area in hardware.
While these costs are not necessarily problematic for higher-performance devices,
they do impact the applicability of cryptography on lower-end devices.

A more recent research direction explores the usage of so-called cryptographic
permutations, an unkeyed bijective function, together with keyed/unkeyed modes
of operations to realize classical communication scenarios using just a single
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(a) Symmetric encryption. (b) Asymmetric encryption.

Figure 1.1: A comparison of symmetric and asymmetric encryption schemes. Red
keys need to be kept private while blue keys can be published.

building block. As of now, the most prominent family of cryptographic per-
mutations is Keccak-p which is used in the NIST standardized hash function
Sha-3 [Ber+11b; NIS15]. Permutation-based cryptography has also inspired
the designs of authenticated encryption schemes such as Ascon [Dob+21], Ele-
phant [Bey+20], Isap [Dob+20], Photon-Beetle [Bao+21], Sparkle [Bei+20],
and Xoodyak [Dae+20b], which currently compete in the final round of the
standardization effort for lightweight authenticated encryption by NIST [NIS18].

1.2.2 Asymmetric Cryptography

Asymmetric cryptography provides mechanisms for message authentication that
can be verified using just public information and establishing a secret (symmetric)
key over an untrusted channel. When compared to symmetric cryptography,
this requires the usage of different types of keys and interfaces. Asymmetric
cryptography operates on a pair of two keys, one of which needs to be kept private
while the other one can be published. In this context, a private key should only
be accessible by an individual person/entity, while secret keys in symmetric
cryptography are shared with all communication parties. Given such a key pair,
asymmetric cryptography can achieve security properties such as confidentiality
and authenticity of messages without the need for sharing secret keys. In the
case of asymmetric encryption, anyone in possession of the public key can use
it to encrypt a message for the holder of the private key but not the other way
around, as illustrated in Figure 1.1b. In the case of asymmetric authentication,
more commonly known as digital signature generation, the roles of the keys
are essentially reversed. Here, the private key is used to create a publishable
signature, whereas the signer’s public key can be used by anyone to verify the
validity of the signature. An example of a cryptographic scheme for asymmetric
encryption is the Rivest–Shamir–Adleman (RSA) cryptosystem [RSA78], while
asymmetric authentication can be realized by the digital signature algorithm
(DSA) [NIS94] or its elliptic-curve equivalent (ECDSA) [JMV01].

One prominent use case of asymmetric cryptography is the exchange of secret
(symmetric) keys for secure communication on the Internet. A simple procedure
for doing that starts with a client that requests a public (encryption) key from
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a web server. This key can be verified by the client for authenticity using
another public (authentication) key that is stored directly on the client’s machine
(browser). To avoid the need for storing different authentication keys for every
web server, so-called certification authorities act as a central root of trust that
binds the identity of many entities (servers) to their respective public (encryption)
keys using digital signatures. Once validated for authenticity, the webserver’s
public (encryption) key can then be used to send a newly generated symmetric key
to the server for later use in faster symmetric authenticated encryption. This last
step is commonly referred to as a key encapsulation mechanism (KEM) [CS03].

Symmetric and asymmetric cryptography differ not only in terms of key han-
dling and interfaces but also in the way these schemes are constructed. Symmetric
cryptography typically decomposes inputs (including keys) into small chunks of
bit or byte granularity, and then applies a number of computation steps that ul-
timately result in highly nonlinear dependencies between chunks, which prevents
the successful application of statistical analysis. In contrast, asymmetric cryptog-
raphy typically relies on the difficulty of solving a more high-level mathematical
problem that prevents an attacker from learning about a private key, given a
corresponding public key (and other domain parameters). A typical example of
a mathematical problem that is assumed to be computationally hard and used
in the RSA cryptosystem is integer factorization [RSA78]. In this context, a
recent research direction is the design and study of cryptographic algorithms that
are based on mathematical problems conjectured to resist the potential future
threat of quantum computers [Sho94]. To facilitate the standardization of such
post-quantum cryptography (PQC) algorithms, NIST put out a call to submit
candidates in 2016 [NIS16b] that has so far brought to light four candidates
that have been selected for standardization: Crystals-Kyber [Bos+18a] in the
KEM category as well as Crystals-Dilithium [Duc+18], Falcon [Fou+], and
Sphincs+ [Ber+19] in the digital signature category. Three of these candidates
are based on mathematical problems in high-dimensional lattices. These lattice-
based algorithms also turned out to become one of the most popular choices
when designing PQC for low-end devices that are of particular interest in the
context of implementation attacks.

1.3 A Brief Introduction to Implementation At-
tacks

Cryptographic algorithms are primarily designed to withstand mathematical
attacks such as linear or differential cryptanalysis [Mat93; BS90] in a so-called
black-box setting. In the black-box setting, an attacker is assumed to be able
to make a certain amount of queries to a cryptographic algorithm while only
being able to observe its inputs and outputs (cf. Figure 1.2b). In other words,
an attacker is assumed to have no prior knowledge about the used key and is
unable to observe any internal state of the cryptographic algorithm. The security
of a cryptographic algorithm is then measured by the most efficient method of
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breaking its security properties in this setting. For a cryptographic algorithm
to be considered secure, the complexity of the best-known cryptanalytic attack
method has to be higher than the claimed security level and often coincides with
the complexity of exhaustive key search.

The black-box attack setting is reasonable for many applications of cryptogra-
phy. For example, if we consider an attacker having access to public WiFi, they
can usually only observe inputs/outputs of cryptographic computations, i.e., the
ciphertexts corresponding to known/unknown messages, without having access
to the communicating devices directly. However, there nowadays also exist many
applications of cryptography that do involve physical devices that can rather
easily fall into the hands of a potential attacker. A classic example of such an
attack scenario are smart cards that are used, e.g., to realize electronic payments
or physical/digital access control to critical infrastructure. In situations like these,
cryptographic secrets stored on these cards, if revealed to an attacker, could
be misused to issue fraudulent money transactions or to disturb the operation
of critical infrastructure, like power grids or telecommunication. Additional
examples include electronic passports that contain cryptographic keys for copy
protection or access control mechanisms on personal devices (laptops or smart-
phones). Consequently, there nowadays exist mandatory certification procedures,
such as Common Criteria [Com], for certain product categories that include lab
testing against implementation attacks. Products are then only allowed to enter
the market once they have successfully passed the certification.

As soon as a cryptographic algorithm, manifested in the form of a concrete
implementation, falls in the hand of an attacker, it no longer finds itself in a
black-box but rather in a gray-box setting. In the gray-box setting, an attacker
has the additional capability to perform implementation attacks that involve
physical manipulations or observations of physical properties (cf. Figure 1.2b).
These improved capabilities can then be used to greatly simplify attacks, which
can ultimately lead to key recovery with much higher efficiency than predicted
in black-box settings.

Depending on the attacker scenario and used equipment, implementation
attacks can be roughly divided into two categories, passive and active implemen-
tation attacks.

1.3.1 Passive Implementation Attacks

Passive implementation attacks, on the other side, solely rely on exploiting
observations of a device’s physical properties. More concretely, by measuring
so-called physical side channels of a device, one can again gain some knowledge
about the internal state of a cryptographic computation, which can be used
to significantly simplify breaking their security properties. These physical side
channels are usually related to the behavior of semiconductor technology, such as
metal-oxide-semiconductor (CMOS), that pretty much every current electronic
device is based on. CMOS circuits have a primarily dynamic power consumption
that depends on state transitions events, such as registers/wires changing their
logical value. These events give away information about executed operations
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(a) Black-box security: A typical attack set-
ting for cryptanalytic attacks.
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(b) Gray-box security: A typical attack setting
for implementation attacks.

Figure 1.2: Black-box vs. gray-box security.

and processed data values via multiple physical side channels such as power
consumption, electromagnetic radiation, photonic emission, or acoustic emission.
We give a more detailed description of passive implementation attacks at the
beginning of Part I .

1.3.2 Active Implementation Attacks

Active implementation attacks manipulate the execution of cryptographic com-
putations in such a way that the resulting misbehavior simplifies breaking their
security properties. A classic example involves an attacker repeatedly querying
a device to perform an encryption of a constant plaintext while trying to force
an erroneous device behavior via fault induction at a certain point in time.
The attacker may then analyze the resulting valid/faulty ciphertexts to learn
information about the cryptographic computation’s internal state and, thus,
about the used key. The fault induction itself can, for example, be realized
by putting the attacked device outside of its specification ranges (clock speed,
temperature, supply voltage) to produce faulty behavior. More sophisticated or
invasive ways of disturbing the correct computation of a device can involve the
usage of electromagnetic pulses, body-biasing induction, or laser fault induction.
We give a more detailed description of active implementation attacks at the
beginning of Part II .
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2
A Primer on

Passive Implementation Attacks

I have approximate knowledge of
many things.

Demon Cat - Adventure Time

Passive implementation attacks extract sensitive information from electronic
devices by analyzing information that is unintentionally leaked via their physi-
cal properties. More concretely, they measure so-called physical side channels
that leak information about the internal state of (in most cases) cryptographic
operations running on target devices, which can then be used to significantly
simplify breaking their security properties. Physical side channels can range from
power consumption, electromagnetic radiation, photonic emission, to acoustic
emission and are related to the behavior of semiconductor technology. One
example of such a technology that forms the base of almost every electronic
device today is complementary metal-oxide-semiconductor (CMOS). During the
computation of a CMOS device, the chip mostly draws power whenever state
transitions events (i.e., changes in logical values) occur in logic gates, registers,
or wires. Consequently, the instantaneous power consumption of a device carries
information about currently executed operations and processed data values. This
side channel can then be exploited by an attacker in various ways.

Electromagnetic radiation is produced by changes in the electric current
flowing through the circuit (gates, registers, wires) that produce changes in the
electromagnetic field and can be sensed by special probes in the form of small
induced currents. The produced electromagnetic radiation is thus a result of the

13
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EM Probe

Microprocessor
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> python measure.py 

collecting power traces... DONE 

post-processing... DONE 

testing key candidates... 
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Figure 2.1: A typical EM analysis setup.

changes in the power consumption of the chip and depends on (sensitive) data
that is processed by a device. These recorded power traces can then be evaluated
using statistical analysis, machine learning algorithms, or pattern recognition
methods.

A typical measurement setup for electromagnetic radiation is depicted in Fig-
ure 2.1. In this scenario, a microprocessor is connected to both a power supply
and a computer. The computer uses a common communication interface to (1)
send data to be processed by the microprocessor using a cryptographic operation
with an unknown key and (2) receive the corresponding computation results. A
physical attacker can now place a probe, suitable for recording electromagnetic
radiation, close to the surface of the microprocessor. The probe itself is connected
to an oscilloscope which allows the constant acquisition of side-channel informa-
tion in the form of power traces. This allows an attacker to observe side-channel
information about the cryptographic computations that are performed on the
device when processing known inputs using an unknown key. In a similar spirit,
an attacker can use different measurement equipment to capture e.g. photonic or
acoustic emission of a chip which are also related to the chip power consump-
tion. Independent of the concrete measurement method, the used exploitation
strategies for extracting information from measurements are usually the same. In
the following, we describe several well-known methods of extracting information
from power traces, as well as corresponding defense techniques.

2.1 Overview of Passive Implementation At-
tacks

In this section, we provide descriptions of various commonly known techniques
for performing passive implementation attacks that are particularly relevant
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to this thesis. These techniques mostly differ in the required sophistication of
laboratory equipment, the required knowledge of an attacker about the attacked
device, the cryptographic algorithm/implementation running on the device, and
the communication interface to the device.

2.1.1 Simple Power Analysis (SPA)

SPA attacks exploit key-dependent patterns in the power trace of a crypto-
graphic computation without the need to compare it to other traces/compu-
tations [MOP07; KJJ99]. These patterns can either stem from key-dependent
sequences of operations or key-dependent processed data values. Even though
SPA exploits only power traces corresponding to the processing of single inputs, an
attacker may still repeat and average measurements corresponding to that input.
This increases the ratio between exploitable signal and electronic/measurement
noise. The term “simple” hence refers to the fact that in SPA, an attacker does
not exploit the relation between multiple power traces corresponding to different
inputs. This restriction is usually not by choice, but rather enforced by certain
attack scenarios. For example, in the case of symmetric cryptography, SPA
attacks can be used for attacking implementations of key expansion operations
that expand a fix-sized secret seed into an arbitrarily long cryptographic key.
Another classical application of SPA attacks is the exploitation of patterns in
square-and-multiply algorithms, as they are used in unprotected implementations
of RSA decryption. In such cases, one can usually distinguish rather easily
whether a squaring or multiplication operation is performed, allowing a direct
extraction of the secret exponent from a power trace.

Given that SPA attacks are rather simple in nature, their successful execution
highly depends on appropriate measurement setups and a sufficient amount
of side-channel information in the power trace. For example, the information
content of the power side channel generally decreases with increasing word sizes
of processors or increasing parallelism in hardware implementation. While this
can be counteracted, e.g., with more localized measurement methods such as
EM probes, EM analysis often requires a decapsulation of the attacked device,
which makes the attack much more costly. Hence, when facing cryptographic
code running on larger processors or parallel cryptographic hardware designs,
exploitation techniques more sophisticated than SPA are usually required to
perform successful attacks.

2.1.2 Template Attacks

Template attacks, first proposed by Chari et al. [CRR02a], represent a more
sophisticated variant of SPA attacks that consist of two phases, an initial template
building phase, and a later template matching phase.

During the template building, an attacker is assumed to gain full control over
the attacked device. They may set arbitrary inputs to precisely characterize
side-channel leakage, i.e., the dependencies between the computation of specific
data and the power side channel. In practice, the leakage analysis is often
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only performed on one or very few specific operations that are executed by
the device and are assumed to leak a sufficient amount of information. The
goal of the attacker is to determine the data value which is processed by the
attacked operation, solely based on measured power traces and the leakage
analysis obtained during the template building phase. More concretely, during
template building, a set of power traces is recorded for every possible data value
t ∈ T that can be processed by the target operation (sequence). Each set of
power traces is then characterized by a multivariate normal distribution that
is described by a tuple (mt, Ct) where mt is the mean vector and Ct is the
covariance matrix.

During template matching, the goal of the attacker is to determine the data
value which is processed by the targeted operation (sequence), solely based on
measured power traces and the templates obtained from the template building
phase. More concretely, given a power trace l corresponding to an unknown
processed data value and a template (mt, Ct) corresponding to one possible
processed value t, we can evaluate the probability density function of the k-
variate normal distribution and calculate the probability:

Pr(l|t) =
exp

(
− 1

2 · (l −mt)
T · Ct−1 · (l −mt)

)√
(2π)k · det(Ct)

By repeating this step for every possible t ∈ T , we can determine the most likely
data value, which is given by the template with the highest probability. In some
applications, one is not only interested in the template of maximum likelihood
but instead in the probability distribution over all templates. Given an observed
power trace l, the probability Pr(t|l) of data value t and corresponding (mt, Ct)
can be calculated using Bayes’ theorem as follows:

Pr(t|l) =
Pr(l|t) · Pr(t)∑|T |

x=1 (Pr(l|tx) · Pr(tx))
,

where |T | denotes the number of possible data values and the prior probability
Pr(t) is set to (1/|T |) since its probability distribution is usually uniform.

2.1.3 Soft-Analytical Side-Channel Attacks (SASCA)

In SASCA, first proposed by Veyrat-Charvillon et al. [VGS14], one first performs
template building for certain intermediate variables of a cryptographic implemen-
tation. In other words, one gets Pr(T = t|`), where T is an attacked intermediate,
t runs through all of the possible values of T , and ` is the observed side-channel
leakage. Then, one constructs a so-called factor graph that models the attacked
algorithm and its specific implementation. A factor graph is a graphical model
of the entire algorithm, including all relations between intermediate variables.
After including the conditioned probabilities into this graph, the belief propaga-
tion (BP) algorithm is run, which returns marginal probabilities for all inputs
(including the involved key components), outputs, and intermediates processed
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by the algorithm. We now give a more thorough descriptions of BP that is based
on MacKay [Mac03, Chapter 26].

BP allows efficient marginalization in certain probabilistic models. Given is a
function

P ∗(x) =

M∏
m=1

fm(xm),

which is defined over a set of N variables x ≡ {xn}Nn=1 and the product of M
factors. Each of the factors fm(xm) is a function of a subset xm of x. The
problem of marginalization is then defined as computing the marginal function

Zn(xn) =
∑

{xn′},n′ 6=n

P ∗(x),

or the normalized version Pn(xn) = Zn(xn)/Z , with Z =
∑

x

∏M
m=1 fm(x).

BP solves this task efficiently by exploiting the known factorization of P ∗.
First, it represents the factorization in a probabilistic graphical model called fac-
tor graph (FG). Factor graphs are comprised of variable nodes, each representing
one variable xn ∈ x, and factor nodes, each representing one fm. Factor fm and
variable xn are connected in the graph if fm depends on xn. Second, it performs
message-passing on the factor graph. Concretely, it iteratively runs the following
two steps until convergence is reached:

1) from variable to factor:

un→m(xn) =
∏

m′∈M(n)\{m}

vm′→n(xn), (2.1)

where M(n) denotes the set of factors in which n participates.

2) from factor to variable:

vm→n(xn) =
∑
xm\n

fm(xm)
∏

n′∈N(m)\m

un′→m(x′n)

 , (2.2)

where N(m) denotes the indices of the variables that the m-th factor depends on
and xm\n denotes the set of variables in xm without xn.

After convergence, the marginal function Zn(xn) can be computed by multi-
plying all incoming messages at each node: Zn(xn) =

∏
m∈M(n) vm→n(xn). The

normalized marginals are given by Pn(xn) = Zn(xn)/Z, where Z =
∑
xn
Zn(xn).

BP is guaranteed to return the correct marginals only if the factor graph is
acyclic. If this is not the case, then the same update rules can still be used in
what is then called loopy BP. This variant might not even converge, but when it
does, it often gives sufficiently precise approximations to the true marginals. The
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performance of loopy BP, i.e., the quality of the approximations and converge
properties, is inversely proportional to the length of the loops. Put simply, loops
in the factor graph introduce positive feedback, which can cause overconfidence in
certain beliefs and subsequently even oscillations, especially when deterministic
factors are involved. Longer loops are less susceptible to this effect. Note that
there do exist approaches, such as generalized belief propagation [YFW00], aiming
at significantly improving the quality of the marginal probabilities in loopy graphs.
They, however, can come with significantly increased computational runtime.

2.1.4 Differential Power Analysis (DPA)

DPA, first proposed by Kocher et al., represents one of the most powerful classes
of passive implementation attacks [KJJ99]. As the name suggests, during a DPA,
one analyzes the differences in a device’s power consumption when performing
cryptographic computations on multiple different inputs. A classical DPA can be
divided into three phases: measurement phase, hypotheses building phase, and
hypotheses matching phase.

During the measurement phase, one collects power traces of a device when
processing varying known inputs (plaintexts/nonces) using the same secret key.
The second phase consists of generating hypotheses on parts of the secret key.
Since this is, by design, infeasible for an entire cryptographic key, this is usually
performed in a divide-and-conquer manner and requires identifying a point in
the attacked implementation that depends both on known input and a key
chunk that is enumerable. The hypotheses contain the potential values of
the attacked intermediate result of the algorithm that is calculated for each
input. As the dynamic power consumption of a CMOS circuit depends on
changes of a signal rather than the absolute values of the intermediate value,
the hypothetical intermediate values are then mapped to a power consumption
model. The mapping to a power model can again be rather simple, for example,
just calculating the number of bits that are nonzero (Hamming-weight model)
or the number of bits that changed their value (Hamming-distance model) but
can also become more complex and use power consumption characteristics of
the attacked device. Finally, a hypothesis evaluation function tells us which of
our hypotheses fits best to a given set of power traces. In DPA, a hypothesis
evaluation corresponding to one guessed key value is usually performed for
multiple known operation inputs. For each of those inputs a hypothesis (i.e.,
power consumption prediction) is created based on the used power model. These
hypotheses are then evaluated using, e.g., the Pearson correlation coefficient to
the recorded power traces at each point in time.

The biggest advantage of DPA over the previously discussed methods is
that for DPA, an attacker does not need precise knowledge about the actual
implementation or the attacked device. Additionally, since a hypothesis is
evaluated over multiple traces, a DPA is usually more resistant to noise and
therefore yields better results.
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2.2 Countermeasures

In order to prevent attackers from performing successful power analysis attacks,
extensive research on countermeasures has been conducted in the last two decades.
In the research community, most focus is put on algorithmic countermeasures
such as masking/hiding, or the design of cryptographic modes/protocols that
reduce the attack surface of power analysis attacks.

2.2.1 Masking

The goal of masking is to randomize the representation of security-sensitive
variables during the execution of cryptographic computations. The resulting side-
channel leakage is then independent of the underlying data, which counteracts
power analysis techniques like DPA. The most popular masking approaches are
Boolean masking schemes, which are formed over finite field arithmetic in GF(2n)
and represent a natural fit for many symmetric cryptographic schemes.

In Boolean masking, a sensitive variable x is split into a number of so-called
shares (denoted xi) which, when considered on their own or in conjunction of up
to d shares, are statistically independent of the corresponding native (non-shared)
variable x. This degree of independence is usually referred to as the protection
order d and requires to split each variable with sensitive information into at least
d + 1 shares. The shares are uniformly random in each execution, but at any
time, it is ensured that the sum over all shares again results in the native variable
x:

x =
⊕
i

xi = x0 ⊕ x1 ⊕ · · · ⊕ xd .

In a similar manner, functions over shared variables are split into component
functions fi(. . . ) such that again a correct and secure sharing of the original
function is established:

f(x, y) =
⊕
i

fi(. . . ) = f0(. . . )⊕ f1(. . . )⊕ · · · ⊕ fd(. . . ) .

Throughout the entire implementation, a proper separation of shares and of the
output of the component functions needs to be ensured in order to not violate
the dth-order independence, which is commonly expressed in the probing model
of Ishai et al. [ISW03]. In the probing model, an attacker is modeled with the
ability to probe up to d intermediate results of the masked implementation. An
implementation is said to be secure if the probing attacker cannot gain any
statistical advantage in guessing any secret variable by combining the probed
results in an arbitrary manner. While this share separation can be easily ensured
for functions which are linear over GF(2n) – for example, the masked calculation
of x⊕ y can be performed share-wise (xi ⊕ yi) –, the secure implementation of
nonlinear functions usually requires the introduction of fresh randomness [ISW03;
Bel+17; Rep+15a; Cnu+16; GIB18; GM17; GMK16; Bar+17].

As an example for a shared implementation of a nonlinear function, we can
consider the generic masked multiplication algorithm by Ishai et al. [ISW03]. In
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Algorithm 2.1 : Masked GF(2n) multiplication according to Ishai et al. [ISW03]
(ISW)

Input: x0, . . . xd, y0, . . . yd ∈ GF(2n)
Output: q0, . . . qd ∈ GF(2n)

1: for i = 0 to d do
2: for j = i+ 1 to d do

3: ri,j
?←− GF(2n)

4: ti,j ← ri,j
5: tj,i ← ri,j ⊕ xiyj ⊕ xjyi
6: for i = 0 to d do
7: qi ← xiyi
8: for j = 0 to d do
9: if i 6= j then

10: qi ← qi ⊕ ti,j

order to securely calculate q = x ·y, each of the d+1 shares of x is multiplied with
each of the shares of y, resulting in (d+ 1)2 multiplication terms. Subsequently,
the multiplication terms are summed up together with fresh random variables
denoted ri,j , and distributed to the output shares qi (Algorithm 2.1).

A first-order masked GF(2) multiplication, which corresponds to the calcula-
tion of an And gate, is given in the following:

q0 = x0y0 ⊕ r0,1

q1 = x1y1 ⊕ (r0,1 ⊕ x0y1 ⊕ x1y0) .

A uniform distribution of each of the shares of q is ensured by the random r shares.
In general, the joint distribution of any d shares of q in the masked multiplication
algorithm is uniform, or in other words, any d shares are independently and
identically (uniformly) distributed.

In case of asymmetric (i.e. lattice-based) cryptography, algorithms typically
operate on elements in larger groups, which is why modular addition of shares is
a more natural fit:

x =
∑
i

xi = x0 + x1 + · · ·+ xd mod q .

2.2.2 Hiding

While masking can generally be seen as a data randomization technique, hiding
techniques perform randomization in the time domain to reduce the dependency
between processed data values and corresponding power consumption. While
such approaches generally cannot be implemented to an extent where, e.g.,
performing a DPA becomes infeasible, they can still be used in addition to
masking to further increase the practical difficulty of power analysis attacks.
Hiding countermeasures are especially effective against profiling attacks like
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SASCA that accumulate leakage over longer instruction sequences and hence
require quite precise knowledge about the instruction order. Shuffling is one of
the most popular hiding countermeasures and attempts to reduce the correlation
between processed data and power consumption by randomizing the execution
sequence of certain operations for a given algorithm. Then, an attacker cannot
reliably distinguish power traces of the attacked operation from power traces of
irrelevant operations. Consequently, the performance of DPA and template attack
decreases since the hypothesis is partially evaluated on wrong data sets. Since
the implementation of shuffling is rather easy, both in software and hardware, it
is used in many real-world cryptographic implementations.

2.2.3 Mode-level Protection

A quite different approach to counteract power analysis attacks is to use crypto-
graphic modes/protocols that can either reduce the cost of certain algorithmic
countermeasures significantly or prevent certain attacks entirely.

In the former case, one can make use of so-called leveled implementations,
a technique that was first used in the authenticated encryption scheme As-
con [Dob+21] and later formalized in [PSV15]. The basic idea behind leveled
implementations is to restrict the need for algorithmic countermeasures to only
certain parts of a cryptographic computation. In the context of authenticated
encryption, this can be achieved, e.g., by making the initialization/finalization
hard to invert, which prevents key recovery if an attacker recovers the cipher
state during message processing. Consequently, if one is mainly concerned about
DPA protection of the key, one does not need additional algorithmic DPA coun-
termeasures during message processing which improves throughput significantly.

In the latter case, one can make use of a mode-level countermeasure against
DPA attacks that is based on the Goldreich-Goldwasser-Micali (GGM) construc-
tion [GGM86] and essentially allows to transform a pseudo-random bit-sequence
generator into a pseudo-random function. In the context of authenticated encryp-
tion, a GGM construction can be used to restrict the attacker to only observe
the processing of two different (attacker-controlled) inputs under the same key,
which prevents attacks like DPA. One example of an authenticated encryption
scheme making use of a sponge-based equivalent of the GGM construction to
achieve DPA protection is Isap [Dob+20].
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3
Single-Trace Side-Channel Attacks on

Masked Lattice-Based Encryption

The current public-key infrastructure is threatened by progress towards large-scale
quantum computing. Public key algorithms whose security relies on the hardness
of integer factorization or discrete logarithm problem, will succumb to Shor’s
algorithm [Sho99]. While estimates on the availability of quantum computers
large/efficient enough to pose a threat for currently used public key cryptography
vary greatly – they range from 15 years [Mar14] to never [Sha16] – the threat is
still taken very seriously. This is demonstrated by, e.g., NIST’s current call for
post-quantum secure proposals [NIS16a] and official recommendations regarding
post-quantum security from the NSA [NSA16].

When it comes to candidates for post-quantum secure algorithms, lattice-
based cryptography appears to be a promising option and has garnered a lot of
attention over the past decade. It proved to be versatile and efficient, as there
already exist practical lattice-based constructions offering basic services such as
public-key encryption, digital signatures, and key exchange. Furthermore, lattices
also serve as the basis for new constructions such as homomorphic encryption.

A popular building block for lattice-based cryptography is a problem called
learning with errors (LWE) [Reg05] and it’s ring-variant (RLWE) [LPR10]. Given
a system of random linear equations, all of which contain a small additive error,
the LWE problem asks to find a solution for the (error-free) equation system.
In matrix-vector notation, this problem can be stated as recovering secret r2
(or error r1) from p = r1 −Ar2. The decision version of this problem, which
is the one actually used to build various cryptographic constructions, asks to
distinguish between elements of (A,p) and (A,p′), where p′ is sampled from a
uniformly random distribution. The ring-variant of this problem introduces some
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additional cyclic structure into the coefficients of the equations (A) that allows a
more compact representation and hence also smaller key sizes.

Recent implementations of RLWE-based public-key encryption, e.g., [Cle+15;
POG15; Roy+14], have shown that its performance is roughly on par with RSA
and ECC-based systems on a large range of platforms. While these results
demonstrate practicality, the implementation security aspect of lattice-based
cryptography is still an fairly unexplored topic. Just like any other crypto-
graphic algorithm, an unprotected implementation of RLWE-based encryption
will succumb to side-channel attacks such as Kocher’s differential power analysis
(DPA) [KJJ99]. Due to the large number of linear operations in the en- and
decryption process, masking [Cha+99] appears to be a natural fit for protecting
lattice-based cryptosystems against DPA. In fact, there already exist several
works showing that (first-order) masked implementations of lattice-based en-
cryption can be implemented with (relatively) little 3 − 5× runtime overhead
[Ode+18; Rep+16a; Rep+16b; Rep+15b].

However, especially for public-key algorithms the simple power analysis (SPA)
resistance is an attention point. This is demonstrated by, e.g., the large number of
single-trace attacks targeting implementations of RSA and ECC. Yet, for lattice-
based cryptography this aspect has not been analyzed before. As implementation
techniques for RLWE-based schemes differ drastically from those of established
public-key constructions, there are new potential venues for such single-trace
attacks.

Our Contribution. In this chapter, we show that single-trace attacks are
indeed a threat to implementations of lattice-based cryptography. We present a
new side-channel attack on implementations of lattice-based encryption that can,
given a practically realistic amount of leakage, recover the private key using just
the side-channel observation of a single decryption. Hence, it can also be applied
to masked implementations to recover each individual share, recombine them,
and still perform full decryption-key recovery.

Our attack targets the computation of the number theoretic transform (NTT),
which is an essential building block for almost all efficient implementations of
lattice-based cryptography. Thus, the attack can be ported to not only different
implementations of encryption, but also to implementations of other lattice-based
constructions. Furthermore, the NTT is not the first target for a DPA attack
and was thus less protected in earlier works [Ode+18].

Our attack is comprised of three main steps. First, we perform a side-channel
template matching [CRR02b] on each modular operation performed during the
inverse NTT in the decryption process. In the second step, we combine the
information (probabilities of intermediate variables) of every operation in the
entire NTT. We do so by representing the FFT-like structure of the NTT as a
graph and then applying the belief propagation algorithm (BP). While the use of
BP in context of side-channel attacks is not new [VGS14; GS15; GS18], it hasn’t
been used in the context of public-key encryption yet. In our setting, a simple
implementation of BP would require an impractical amount of time. Thus, we



3.1. Lattice-Based Encryption and Implementation 25

designed several optimizations that are targeted specifically at the NTT analysis.
In our third and final step, we combine the knowledge of some secret intermediate
variables with the public key in order to reveal the private key. Concretely, we
recover the full decryption key by first reducing the size of the public key and
then performing a lattice decoding.

We evaluate our single-trace key recovery attack in two different settings.
First, we determine the success rate in a generic Hamming-weight leakage model.
There, our attack has a high success rate, i.e., > 0.9, with noise parameters of
up to σ = 0.4. Second, to verify our findings in practice we use real traces from
EM measurements of an ARM Cortex-M4F software implementation. In this
latter scenario, we were always able to recover the decryption key. Finally, we
also show that our attack performs similarly well even if masking is used.

Outline. In Section 3.1, we recall lattice-based encryption, efficient implemen-
tations, as well as proposed side-channel protection mechanisms. The three
steps of the attack are then described in the following sections. The first step, a
side-channel analysis of the NTT, is given in Section 3.2. Then, in Section 3.3
we efficiently combine all information using Belief Propagation. The third and
final step, i.e., lattice decoding, is given in Section 3.4. We present and discuss
the outcome and performance of our attack in Section 3.5.

3.1 Lattice-Based Encryption and Implementa-
tion

In this section, we recall efficient implementation techniques for lattice-based
encryption as well as previous works on side-channel countermeasures. We only
consider standard lattice-based encryption schemes (cf. Appendix A.2) that
offer CPA security [Flu16]. While Oder et al. [Ode+18] recently presented an
extension that also offers protection against adaptive chosen-ciphertext attacks
(CCA2), the core encryption and decryption algorithms are identical, which is
why we do not further discuss their CCA2 transformation here.

3.1.1 Efficient Implementation

There already exists a somewhat large body of work targeting efficient implemen-
tation of the above encryption scheme. They range from FPGAs to low-resource
microcontrollers and desktop CPUs (e.g., [Cle+15; Göt+12; Liu+15; PG13;
POG15; Roy+14]).

In our work we use the parameter set (n = 256, q = 7681, σ = 4.51), which
was introduced by Göttert et al. [Göt+12] and is used by all of the above
implementations. The concrete security level provided by this instance is still
under debate and estimates vary (see, e.g., [APS15; GVW17; Ode+18]). However,
all our later analysis can be extended to other parameters.
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Number Theoretic Transform (NTT). If q is prime, n a power of two, and
q ≡ 1 mod 2n (which is the case for virtually all previously proposed parameter
sets), then there exist primitive n-th roots of unity ωn in Zq. This fact allows
to efficiently compute polynomial multiplication in Rq by means of the number
theoretic transform (NTT).

The NTT is essentially a discrete fourier transform (DFT) in a prime field Zq
instead of over the complex numbers C. Thus, this transformation is efficiently
computed using the same optimizations found in, e.g., the Cooley-Tukey FFT,
and runs in time O(n log n). The basic building block is a butterfly, which
is comprised of a modular multiplication with a certain power of the chosen
primitive root, a modular addition, and a modular subtraction. A total of
n log2(n)/2 butterflies are computed during the NTT, as shown in Figure 3.1
with the example of a 4-coefficient NTT. The required powers of the primitive root,

i.e., ω0
n . . . ω

n/2
n , are typically called twiddle factors. The inverse transformation

(INTT) is computed by simply invoking the NTT with ω−1
n mod q. We denote â
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Figure 3.1: A 4-coefficient NTT network comprised of 4 butterflies.

Multiplication of two polynomials a,b can now be implemented as c =
INTT(NTT(a) ∗NTT(b)), where ∗ denotes a pointwise multiplication1. Thus, a
product can be computed in time complexity O(n log n) (compared to O(n2) for
non-ring-based LWE constructions). This is one of the main arguments behind
the choice of the particular ring2 Rq = Zq[x]/〈xn + 1〉.

As proposed by Roy et al. [Roy+14], the encryption scheme described in Ap-
pendix A.2 can be optimized by keeping the ciphertext in the NTT domain, i.e.,
transmitting (ĉ1, ĉ2). This requires that the same primitive root ωn is used for
both encryption and decryption. Thus, it must be agreed upon and is public.

1This explanation is slightly simplified and omits, e.g., the scaling required for the negative-
wrapped convolution. For a more thorough explanation, we refer to [Roy+14].

2There do exist proposals that are consciously avoiding the ring Rq and thus cannot use the
NTT [Ber+16; Bos+16]. Still, NTT-enabled variants are the large majority.
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Figure 3.2: Basic masking scheme for decryption.

3.1.2 Side-Channel Protection of RLWE Encryption

Implementation security of lattice-based cryptography is still a fairly new topic.
Nevertheless, there do exist several previous works that study potential protection
mechanisms. We now discuss some of these proposals.

Masking. Due to the linear relationship between arithmetic masks for the
main operations, i.e., polynomial addition and multiplication, arithmetic mask-
ing (cf. Section 2.2.1) is a natural fit for lattice-based encryption [Cha+99]. As
proposed by Reparaz et al. [Rep+16b; Rep+15b] and shown in Figure 3.2, the pri-
vate key r2 can be split into two shares r′2, r

′′
2 such that r2 = r′2 +r′′2 mod q. Then,

polynomial multiplications, additions, and the inverse NTT can be computed on
each share individually.

The final decoding step, i.e., recovering m from m?, is nonlinear and requires
more care. Reparaz et al. designed a masked decoder which outputs two binary
shares of the message, i.e., m = m′ ⊕m′′, which can then be used as a shared
key in a protected implementation of, e.g., the AES.

Shuffling and Blinding. In addition to masking, Oder et al. [Ode+18] propose
to use further countermeasures. First, they suggest to use shuffling to protect
the pointwise operations, i.e., pointwise addition and multiplication. They state
that these operations are the most likely target for a DPA attack. Hence, the
NTT is still computed in an unshuffled manner.

And second, they also use a randomization technique previously proposed by
Saarinen [Saa18]. They pick random values a, b ∈ [1, q− 1] and then multiply the
coefficients a · ĉ1, b · r̂2 and ab · ĉ2 mod q. Due to the linearity of the NTT, the
mask can be removed by multiplying the output of the INTT with (ab)−1 mod q.

Additively Homomorphic Masking. In a later work, Reparaz et al. present
a different masking approach which exploits the additively homomorphic property
of LWE [Rep+16a]. This, however, has some caveats. First, Reparaz et al. do
not claim theoretical first-order security. And second, decoding errors are more
likely. This makes their method incompatible with the CCA2-transformation
presented by Oder et al. [Ode+18]. Due to these reasons, we do not further
analyze the susceptibility of this approach to our attack.
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3.2 Attack Step 1: Side Channels in an NTT
Butterfly

After having covered all required preliminaries, we now start the description of
our attack. As the first step of the attack, we exploit side-channel leakage during
the computation of the inverse NTT in the decryption algorithm. Concretely, we
first perform a profiling and then, for the actual attack, we match the recorded
templates at each modular operation. As outcome, we obtain information in
form of a probability vector for each such operation. In order to understand how
much information a side-channel adversary can realistically expect in this first
step, and to also allow attack evaluation in a realistic scenario, we performed a
side-channel analysis of the NTT on a real device. We now discuss our targeted
implementation and platform, the measurement setup, and some results of this
analysis. We additionally introduce a generic and simpler Hamming-weight
leakage model, which will later be used in addition to real traces. First, however,
we explain the choice of the NTT as the primary target for our attack.

3.2.1 The NTT as Side-Channel Target

The number theoretic transform (NTT) is a main building block of virtually
all efficient instantiations and implementations of lattice-based cryptography.
Yet, thus far it has not been target of any side-channel analysis. One potential
reason is that the pointwise operations, i.e., multiplications and additions while
computing ĉ1 ∗ r̂2 + ĉ2, are the prime target for DPA attacks as they allow easy
coefficient-wise prediction of intermediate variables [Ode+18]. However, this
makes it tempting to use less protection in other parts, i.e., the NTT. Also,
the NTT is an interesting target for algebraic side-channel attacks. As seen
in Figure 3.1, it is comprised of many potentially leaking modular operations
which are additionally connected by relatively simple algebraic rules. This makes
it possible to combine the information of all leaking computations.

3.2.2 Measurement Setup and Implementation

We performed side-channel measurements on a Texas Instruments MSP432 (ARM
Cortex-M4F) microcontroller on a MSP432P401R LaunchPad development board.
A Cortex-M4F was also used by many other (protected) implementations of RLWE
encryption [Cle+15; Ode+18; Rep+16b].

We exploit the EM side channel. As shown in Figure 3.3, we placed a Langer
RF-B 3-2 near-field probe in proximity to the external core-voltage regulation
circuitry. This setup does not require any on-chip spatial profiling. Also, we
expect similar outcomes for a power analysis. Our microcontroller was clocked
at its maximum possible frequency of 48 MHz.

We base our analysis on the implementation techniques used in the open-
sourced Cortex-M4F implementation of de Clercq et al. [Cle+15], which is also the
basis of the masked software implementation of Reparaz et al. [Rep+16b]. They
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Figure 3.3: EM probe placed near the voltage-regulation circuitry of an ARM Cortex-
M4F.

implemented modular multiplication with division, i.e., a mod q = a− qba/qc,
and use the integrated hardware multiplier and divider. On our platform, the
multiplication runs in constant time, but the DIV instruction does not. Reduction
after addition and subtraction is implemented using ARM conditional statements
(IT instruction), which run in constant time.

3.2.3 Real-Device Side-Channel Analysis

The NTT is comprised of repeated applications of a butterfly. It is a reasonable
assumption that all invocations utilize the same hardware, e.g., on-chip multiplier
and divider, which results in loop-invariant leakage. To simplify our later analysis
and attack evaluation, we thus opt for the following approach. We analyzed
the butterfly operations, i.e., modular multiplication and addition/subtraction,
independently. For the analysis, the operands were preloaded into registers and
no leakage of loading and storing in memory was used. We prerecorded a set
number of traces for each possible operand combination. For attack evaluation,
we pick a random key, perform encryption/decryption, and for each of the
n log2(n)/2 = 1024 butterflies invoked during decryption randomly pick one of
the prerecorded traces that corresponds to the processed intermediate variable.
We now describe our results for each operation in the butterfly.

Modular addition and Subtraction. de Clercq et al. implement modular
addition and subtraction with conditional ARM statements. While these run in
constant time, they still leak their state through other side channels. With a
template matching, we were able to correctly classify virtually all, i.e., > 0.99,
of the taken branches. In the following, we simply assume that an attacker can
correctly detect whether a reduction happened or not. Alternatively, one could
also include the probability that a reduction happened in the later analysis.

Modular Multiplication. In a butterfly, one of the inputs is multiplied by
a known twiddle factor ω. There are qn/2 = 983 168 possible operand/twiddle
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factor combinations, for each of them we prerecorded 100 traces. Thus, we use
roughly 100 million traces for evaluation. For the attack, for each multiplication
we randomly pick one out of the 100 traces corresponding to the processed value.

In the analysis, we use two steps to recover information on the unknown
input. First, we exploit that the runtime of division is data dependent. We found
that it depends on the bit size of the dividend, i.e., the value that is reduced
(the divisor is the constant q). By measuring this time, which we do with a
simple thresholding in the side-channel trace, we can immediately assign the
intermediate variable to one out of several disjoint sets.

In the second step, we perform a side-channel template matching [CRR02b] to
further narrow down the operand. For each multiplication, we use 99 (remaining)
traces to build templates for each currently possible operand. The points-of-
interest used for template building were determined with a t-test [GLP06]. We
then match all templates with the previously picked trace and compute the
probability vector required for the next step of our attack.

In order to give a sense on the informativeness of our traces we use the metric
proposed in [SMY09], i.e., give the average entropy left in the probability vectors
conditioned on the leakage Pr(T = t|`). Without leakage, we have an entropy of
log2(q) ≈ 12.9 bit. After performing the template matching, the average entropy
decreases to roughly 7 bit. However, we observed that the outcome somewhat
correlates with the value of the used twiddle factor. With ω0

n = 1 we have a
remaining entropy of about 10 bits. With larger values, we generally achieve
better results.

3.2.4 A Simplified Model

In order to allow reproducibility, we additionally analyze the performance of
our attack with a more generic and simpler model, namely the common noisy
Hamming weight leakage model. That is, apart from knowing if a reduction
happened after addition/subtraction, for each modular multiplication an attacker
gets two samples of the form:

l = (HW(a) + N(0, σl))||(HW(aωin mod q) + N(0, σl))

a is the unknown input and ωin the used twiddle factor. HW denotes the Hamming
weight function and N the Gaussian distribution with standard deviation σl. For
the experiments, we perform a 2-variate template matching on these simulated
traces.

3.3 Attack Step 2: Belief Propagation in the
NTT

In the above template matching, the adversary obtains side-channel information
on each computed butterfly. In the second step of the attack, we now combine
all this information over the entire (I)NTT. We efficiently do so by using belief
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propagation (BP), described in Section 2.1.3. In our concrete scenario, we
construct a factor-graph representation of the NTT, include the side-channel
information in this graph, and then run BP until convergence is reached. With
the constructed factor graph the runtime of a straightforward BP implementation
is impractical. Thus, we present optimizations designed specifically for the NTT
factor-graph, which decrease the runtime drastically.

3.3.1 Factor-Graph Construction

A factor graph is a bipartite graph containing variable nodes and factor nodes.
For modeling the NTT, we add one variable node x for each input/output of a
butterfly. With n = 256, we thus have n(log2(n) + 1) = 2 304 variable nodes.

We then add three types of factor nodes: fADD, fSUB, and fMUL. As seen
in Figure 3.4, each type of factor occurs once per butterfly. Thus, there are a
total of 3n log2(n)/2 = 3072 factor nodes in the NTT model. Evidently, there
are cycles in the graph shown in Figure 3.4, so the loopy BP algorithm is needed.

fMUL is only connected to x2 and thus has degree 1. Its purpose is to add the
side-channel information gathered from the modular multiplication of x2 with
the known twiddle factor ω. We performed a template matching in Step 1 and
therefore are given vector of probabilities conditioned on the leakage l. Thus we
have:

fMUL(xi2) = Pr(x2 = xi2 |l)
The factors fADD and fSUB represent the modular addition and subtraction,

respectively. They are connected to both butterfly-input nodes x1 and x2, and
one of the two output nodes x3 or x4. Thus, their degree is 3. These factors model
how variable nodes inside a butterfly are related, e.g., that x3 = x1 + x2ω mod q.
Furthermore, we use these factors to include whether a reduction happened after
addition or subtraction, respectively. For addition with subsequent reduction
step, we have:

fADD(xi1 , xi2 , xi3) =

{
1 if xi1 + xi2ω ≡ xi3 mod q and xi1 + (xi2ω mod q) ≥ q
0 otherwise

If no reduction happened, then the second clause xi1 + (xi2ω mod q) > q is
simply negated. For subtraction with subsequent reduction, we have:

x1
x2

x3
x4-

+ω x3
x4

fMUL
fSUBx2
fADDx1

Figure 3.4: Butterfly network (left) and our corresponding factor graph (right)
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fSUB(xi1 , xi2 , xi4) =

{
1 if xi1 − xi2ω ≡ xi4 mod q and xi1 − (xi2ω mod q) < 0

0 otherwise

Other Leakage Points. The factor-graph representation of the NTT is flexible,
thus it can be modified to accommodate other leaking operations. One could, e.g.,
additionally include side-channel information of loading and storing in memory
or leakage on operands of modular addition and subtraction.

3.3.2 BP Runtime Estimation without Optimization

As it turns out, the runtime of a straightforward implementation of BP on our
constructed factor graph is impractically high. It depends on the number of
iterations, the number of variable nodes and the size of their domain D, as well
as the number of factor nodes and their degree.

Each iteration of BP involves the invocation of the update rules q (variable to
factor, Equation 2.1) and r (factor to variable, Equation 2.2) for all variable nodes
and factor nodes, respectively. In our case the number of required iterations
is small, e.g., ≤ 25, and therefore does not have a significant impact on the
asymptotic runtime. The runtime of q is also fairly low.

However, the same cannot be said for r. For a factor f with degree deg(f) and
its inputs x1, . . . , xdeg(f) with domain D, one can compute the update rule given

in Equation 2.2 by simply looping over all |D|deg(f) possible input combinations
of f . In our scenario, we have factors fADD, fSUB with deg(f) = 3 and variable
nodes with domain size |D| = q = 7681. When additionally multiplying with
the number of fADD and fSUB in our factor graph, then we reach a runtime
of ≈ 249 for a single iteration. Reducing from cubic to quadratic runtime can
be done by only considering triplets where fADD, fSUB can be 1, but this still
amounts to ≈ 237 operations. Obviously, both numbers are not very practical
and optimizations are needed.

3.3.3 Runtime Optimizations

In Algorithm 3.1, we show an optimization that can decrease the runtime of r for
all factor nodes of degree 3 in the factor graph, i.e., fADD and fSUB, drastically.
We show it on the example of a factor node of type fADD. A slight variation of
the presented algorithm can be used to optimize fSUB.

Our optimization uses the fact that update rules for input/output distributions
of modular additions/subtractions can be efficiently expressed in matrix-vector
notation. Consider the addition a + b = c mod q, with qa, qb, qb the incoming
messages from the corresponding variable nodes. Each such message is a q-
dimensional vector assigning a probability to each value in D, we say that
ai = qai = Pr(a = i). The output rc depends on qa, qb and an entry c∗k = rck can
be computed as the sum over all aibj with i+ j ≡ k mod q. The whole update
can be written in matrix-vector notation:
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Algorithm 3.1 Efficient BP for Modular Addition

Input:
qa, qb, qc Incoming messages from summands and result node
Reduction True if a reduction step was executed

Output:
ra, rb, rc Outgoing messages for summands and result node

1: â = FFT2q(qa), b̂ = FFT2q(qb), ĉ = FFT2q(qc)

2: ta = IFFT2q(CONJ(b̂) ∗ ĉ)
3: tb = IFFT2q(CONJ(â) ∗ ĉ)

4: tc = IFFT2q(â ∗ b̂)
5: if Reduction then
6: ra = ta[q . . . 2q − 1], rb = tb[q . . . 2q − 1], rc = tc[q . . . 2q − 1]
7: else
8: ra = ta[0 . . . q − 1], rb = tb[0 . . . q − 1], rc = tc[0 . . . q − 1]
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where the columns of the left matrix are circular shifts of qa. The above equation
can be rewritten as a circular convolution qa?qb, which can be efficiently computed
using the FFT and the circular convolution theorem. Thus, we have :

rc = qa ? qb = IFFTq(FFTq(qa) ∗ FFTq(qb)).

The update rules for ra and rb can be obtained similarly by additionally using
complex conjugations CONJ, as shown in Algorithm 3.1. Recall that we also
include whether a reduction happened during modular addition and subtraction.
This can be efficiently done by replacing the q-coefficient FFT with a 2q-coefficient
FFT and by using only either the upper or lower half of the IFFT output.

The runtime of computing r for the degree-3 factor nodes is now reduced to
O(q log q), since the only runtime relevant operations are FFTs. This allows us
to perform one iteration of the BP algorithm for our whole factor graph in about
one minute using a single core of an Intel Core i7-5600U CPU.

3.3.4 BP on Subgraphs

In our experiments, we found that applying BP to the whole NTT factor graph
does not yield satisfactory results. While we can narrow down values, the outcome
was not sufficient for key recovery. Yet, we were able to identify two problems
and show how to circumvent them by applying BP only to subgraphs:
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• Uneven distribution of side-channel information. The template
attack on multiplication is a primary source of information. Yet, multipli-
cations are not spread evenly across the NTT, as illustrated in Figure 3.5a
(also compare to Figure 3.1). Each cell of this figure corresponds to one
variable node. White variables are multiplied with a twiddle factor, black
ones are not. Due to the lack of multiplications and its side-channel in-
formation in the top-right corner, the BP algorithm cannot recover these
variable with high-enough certainty.

• Varying outcome of the template attack. As already pointed out
in Section 3.2.3, the performance of the template attack depends on the
used twiddle factor. In the first NTT layer, one always multiplies with
ω0
n = 1. Even if this multiplication is not optimized out, the fact that no

reduction is performed leads to little leakage.

We circumvent these two problems by applying BP not on the whole NTT
graph, but instead only on disjoint subgraphs. As depicted in Figure 3.5b, we
have subgraphs FG 1, FG 2, and FG 3. These do not include the first layer and
have a higher ratio of observed to unobserved variables (compared to the full
graph). Thus, applying BP to these subgraphs gives significantly better results.
After convergence is reached on all 3 graphs, we perform a classification, i.e., pick
the most likely value, on certain variable nodes. Concretely, we use variables
from layer 6 (output of layer 5 and input of layer 6). This is the last layer of
FG 1 and variables in later layers are usually recovered with higher confidence.
As shown in Figure 3.5c, we use the 192 variables with indices 32 . . . 128 and
160 . . . 255. If masking is used, then we have to perform BP twice to get the
intermediate variables in both invocations of the INTT. The native intermediate
variables can then be computed by simply adding the recovered variables of both
INTTs.

3.4 Attack Step 3: Lattice Decoding

Due to applying BP only on subgraphs, we cannot recover the full INTT input
ĉ1∗r̂2+ĉ2. Hence, the decryption key r̂2 (or equivalently r2) cannot be determined
with simple linear algebra and another step is needed. In this third and final
attack step, we combine the recovered intermediate variables with the public
key. First, we create linear equations in the variables and r2 and use them to
decrease the rank of the lattice spanned by the public key (a,p). Then, we use
lattice-basis reduction and decoding to find r2 in the reduced-rank lattice.

3.4.1 Generating Linear Equations in the Key

We use the recovered intermediate variables to construct linear equations in the
private key r2. Polynomial multiplication in Rq can be written as a matrix-vector
product. We write the INTT output as m? = c1r2 + c2 = C1r2 + c2, where the
columns of matrix C1 are nega-cyclic rotations of c1. All operations inside the
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Figure 3.5: Representation of the NTT and used factors.

(I)NTT are linear, thus this system can be transformed to describe any of its
intermediate variables. Concretely, we transform it such that it describes the
recovered values of the sixth INTT layer.

We transform the system by performing a partial reversal of the INTT.
We revert 3 butterfly stages by computing x1 = (x3 + x4)/2 mod q and x2 =
(x3 − x4)/(2ω) (cf. Figure 3.4). We end up with a system of form C′1r2 + c′2 = x,
with x being the 192 recovered intermediate variables and C′1, c′2 the transformed
coefficients.

3.4.2 Key Recovery using Lattice Reduction

The decryption key r2 is finally recovered by combining the above system with
the information embedded in the public key (a,p). Recall that p = r1 − ar2. As
r1 is small (it is sampled from a discrete Gaussian distribution with small σ), we
have that p ≈ −ar2. Thats is, p is close to the vector −ar2 which is part of the
q-ary lattice spanned by the columns of A (the matrix consisting of nega-cyclic
rotations of a). Hence, the recovery of r2 can be seen as a bounded-distance
decoding problem. The chosen system-parameters (n, q, σ) ensure that solving
this decoding problem is not feasible without further information.

However, by incorporating the linear equations from above the problem can be
reduced to a size that is solvable. We substitute the 192 equations C′1r2 + c′2 = x
into p = r1 −Ar2 to get some p′ = r1 −A′r′2. The number of columns of A′,
and hence the rank of the spanned lattice, is now reduced to 256− 192 = 64.
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We then search for the closest vector to p′ by solving a shortest-vector
problem. Concretely, we search for the error term r1 (or −r1) as an unusually
short vector in the lattice generated by (A′||p′). This approach of solving the
lattice decoding problem is described by, e.g., Albrecht et al. [AFG13]. The
short vector is recovered using the BKZ lattice basis reduction algorithm, we
use the implementation provided by Shoup’s NTL [Sho]. We invoke BKZ with a
blocksize of 25, but abort reduction as soon as a candidate for r1, i.e., a vector
with a small enough norm, is found.

After that, one can compute the private key r2 by solving the linear system
p = r1 − ar2 for both recovered r1 and −r1. The correct r2 is the one that
follows the distribution used for key generation. That is, we pick the smaller out
of the two solutions.

Performance of Decoding. We tested the correctness and performance of
this key recovery approach by performing well over 1 000 experiments. In each of
them we use the correct intermediate variables (cf. Figure 3.5c) and only perform
the decoding step. All our experiments were successful. The average runtime on
a single core of a Xeon E5-2699v4 CPU is approximately 45 seconds.

This decoding approach is not limited to using exactly 192 recovered inter-
mediate variables, it can be invoked with any number of coefficients. However,
the runtime of decoding will increase if fewer values are available. For instance,
with 160 recovered variables the average runtime is 5 minutes and thus still well
within practicality. Below that, however, it increases drastically. With 150 values,
it reaches multiple hours. Experiments with 146 or fewer coefficients were not
successful after 1 full day of computation.

3.5 Attack Results and Conclusion

Our attack consists of subsequent execution of the three attack steps described
in the previous sections. We now present the outcome. First, we evaluate the
attack using real traces. We illustrate an exemplary outcome and give a success
rate. Then, we give the success rate for the Hamming-weight model with varying
noise-parameter σl, both with and without masking applied.

3.5.1 Real Device

With real traces obtained from the setup described in Section 3.2, we have the fol-
lowing results. Figure 3.6 illustrates an exemplary outcome of template-matching
and the subsequent Belief Propagation on the subgraph FG 3 (cf. Section 3.3.4).
For each variable node, we color-code the entropy of the probability vector. For
black nodes, the probability distribution is close to uniform, whereas for white
nodes one value has reached probability close to 1. After 1 iteration (Figure 3.6a),
the probability distributions essentially correspond to the direct output of the
template matching. After 20 iterations of BP (Figure 3.6c), the network has
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converged and almost all intermediate variables are determined with very high
probability.

Lattice decoding is successful if all of the 192 variables used for key recovery
are correct. After observing Figure 3.6, it should not come as a surprise that
all our key recovery experiments in the real-trace setting were successful. The
success rate, i.e., the probability that all used coefficients are correct, is 1.
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Figure 3.6: FG 3: entropy after set number of iterations of BP.

3.5.2 Hamming-Weight Model

In order to get a broader and more generic analysis of our attack, we also tested
it with a noisy Hamming-weight model (cf. Section 3.2.4). We rerun all tests
with varying noise parameter σl. The outcome is illustrated in Figure 3.7, where
we show the success rate and the average entropy (after template matching) for
each tested value of σl. We give the entropy to allow at least a rough comparison
to the real-trace setting.

In the non-masked case, we have a high single-trace success rate up to σl = 0.4
or 0.5, then it drops drastically. Note, however, that an attacker that can observe
multiple decryptions can decrease the observed σl by averaging the traces. In the
masked setting, key recovery is successful if the correct intermediate variables
are recovered in both invocations of the inverse NTT (see Figure 3.2). Only
then their sum is equal to the native value. Thus, the expected success rate is
squared, which is confirmed by our results. Obviously, averaging cannot be done
if masking is used.
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Figure 3.7: Success rates in the Hamming-weight leakage model.

3.5.3 Conclusion

Our attack clearly shows that SPA security of lattice-based schemes cannot be
neglected and that relying on masking alone is not sufficient. Implementation
techniques that are vastly different to established constructions such as RSA
and ECC open up new venues in this regard. In fact, the regular structure of
the NTT allows to efficiently combine leakage of the entire decryption process.
Furthermore, each recovered intermediate variable can be used to decrease the
difficulty of key recovery with the public key. And while this work focuses on
lattice-based encryption, our attack can be adapted to any other implementation
of lattice-based cryptography which employs the NTT.

When it comes to potential countermeasures, masking appears to be effective
against DPA, yet it does not prevent our attack. Thus, additional countermeasures
should be implemented and will now be discussed.

Possible Countermeasures. One of the first measures to strengthen an im-
plementation against SPA attacks is to ensure a constant runtime and control
flow. In our side-channel analysis of a real device, we exploit timing differences
stemming from the DIV operation invoked during modular reduction. There do
exist constant-time alternatives, as already shown by Oder et al. [Ode+18].

Like many other algebraic attacks, our key recovery can be thwarted by
employing shuffling. Concretely, the operations inside the NTT, e.g., the order
in which the butterflies are processed within one NTT layer, need to be shuffled.
Shuffling only pointwise operations, as proposed by Oder et al., clearly does not
hamper our attack. Other hiding countermeasures, such as the random insertion
of dummy operations inside the NTT, can also make our attack harder.

Oder et al. also propose to use a blinding countermeasure (cf. Section 3.1.2).
Our attack still applies, but needs an additional step and potentially a different se-
lection of recovered intermediate variables. Concretely, it requires that a sufficient
amount of the INTT output coefficients are recoverable or can be computed from



3.5. Attack Results and Conclusion 39

the recovered variables. Then, one can test if the distribution of the unblinded
INTT output, i.e., after multiplication with ab−1 mod q, corresponds to that of
a valid m? (centered around 0 and q/2). For a non-masked implementation, or if
the same blinding values a, b are reused for both shares, then one can run through
all q − 1 possibilities of ab mod q. If different a, b are used for both shares, then
one needs to try all (q − 1)2 combinations. With our parameters, this can be
easily done within a minute. When using 64 output coefficients, this always
returned the correct blinding values in our tests. Hence, this countermeasure does
not significantly increase single-trace security. It, however, prevents averaging in
the non-masked scenario.
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4
More Practical Single-Trace Attacks on

the Number Theoretic Transform

In Chapter 3, we have proposed an attack on implementations of the number
theoretic transform (NTT), which is an integral part of many lattice-based
cryptographic schemes such as NewHope [Alk+17a] and Kyber [Ava+17]. The
attack follows the path of soft-analytical side-channel attacks [VGS14]. That is, we
first perform a side-channel template matching [CRR02b] on certain intermediate
variables, construct a graph describing the NTT and all of its computation
steps, include the observed leakage information in this graph, and finally run a
message-passing algorithm known as belief propagation. The recovered secret
input is either the key itself or can be used to recover said key.

However, while this attack can even bypass certain countermeasures, it does
leave open the question of true practicality. For the evaluations on a real device,
we need to build close to one million templates. Besides, we attack a variable-time
implementation. While the attack, as such, does not require timing differences, it
does benefit from them. And finally, we mainly focus on attacking the decryption
process. This is the most apparent target and the involvement of long-term
secrets makes the need for side-channel protections obvious. Encryption, however,
only deals with ephemeral secrets and might thus see less care in side-channel
protections. Still, a successful attack on encryption can lead to a compromise of
the entire system.

Our Contribution. In this chapter, we address the above limitations and
show that single-trace attacks on the NTT can be made truly practical. Several
improvements to the attack, alongside the choice of a different target, allow

41
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us to attack a constant-time microcontroller implementation of the Kyber
lattice-based key exchange [Ava+17], all while requiring only 213 univariate
Hamming-weight templates.

More concretely, we include three improvements to belief propagation in the
context of side-channel attacks on the NTT. We merge certain nodes in the
graph representation of the NTT, make use of message damping, and introduce
a new message schedule. These changes lead to higher accuracy of computed
marginal probabilities and thus to better attack performance. The runtime of
belief propagation, while increased, still stays very reasonable.

As already hinted above, we change the concrete target of our attack. In the
previous work, we attacked the inverse NTT transformation during decryption.
Decryption involves the private key, which makes not only attacks worthwhile,
but also the need for careful side-channel protection obvious. We now target
encryption instead. While this limits attacks to recovering the exchanged sym-
metric keys, it focuses on a part seemingly requiring less side-channel protection.
Also, in encryption, the inputs of the NTT are confined to a narrow interval,
which further aids attack performance.

These changes and performance improvements allow a simplification of the
physical part of the attack. That is, by switching to Hamming-weight tem-
plates and targeting load/store operations instead of multiplications, the number
of required templates and thus also traces for template building is cut down
drastically.

We evaluate our attack for different noise levels using simulations. Further-
more, we study the effects of masking and recent implementation techniques,
such as lazy reduction, on the attack performance. Finally, we demonstrate the
attack using real power measurements of an STM32F4 microcontroller running a
constant-time ASM-optimized Kyber implementation. Using just 213 univariate
Hamming-weight templates, the entire secret NTT input can be recovered with a
probability of up to 95%. Finally, we note that our attacks can be easily ported
to many other implementations that make use of the NTT.

Outline. In Section 4.1, we briefly describe the concrete target of our attacks,
namely the Kyber key exchange, and discuss its implementation aspects. In Sec-
tion 4.2, we recall some details of our attack from Chapter 3 and also discuss
its shortcomings. After having covered the necessary background, we show all
our improvements and adaptations in Section 4.3. We then evaluate the attack
using simulations in Section 4.4 and target a real device in Section 4.5. In Sec-
tion 4.6, we discuss the applicability and effectiveness of previously proposed
countermeasures.

4.1 Lattice-Based Cryptography

In this section, we briefly recall the lattice-based key-exchange Kyber. We also
describe efficient implementation techniques, both for Kyber and lattice-based
cryptography in general.
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4.1.1 Kyber

In this work, we consider the specification of the Kyber key exchange [Ava+17]
as used in the first round of the NIST standardization process [NIS]. In its
core, Kyber resembles the RLWE encryption scheme proposed by Lyubashevsky,
Peikert, and Regev [LPR10] as described in Appendix A.2 but it bases its security
on the module learning-with-errors assumption (MLWE) [LS15]. This means that
it operates with matrices/vectors containing polynomials defined over the ring
Rq = Zq[x]/〈xn + 1〉. We use boldface letters to differentiate matrices/vectors of
polynomials from single polynomials.

Already in its specification, Kyber prescribes usage of the NTT for efficient
polynomial multiplication. Via pointwise multiplication of transformed polyno-
mials, i.e., ab = NTT−1(NTT(a) ◦ NTT(b)), multiplication can be performed in
time O(n log n). We use â as shorthand for the NTT-transformed of a, with â
we denote vectors where all component polynomials are transformed.

The core public-key encryption scheme (PKE) only offers IND-CPA security.
For this reason, the Kyber authors apply a variant of the Fujisaki-Okamoto
transform [FO99] to build an IND-CCA2 secure key-encapsulation mechanism
(KEM). In essence, the transform requires a re-encryption of the decrypted
message using the randomness seed used for the original encryption, which is
embedded in the ciphertext. Only if the recomputed and the received ciphertexts
match, the decrypted message is released. Since recovering the key/message used
in the underlying PKE directly leads to key/message recovery of the KEM, we
omit details of the transform and only focus on the PKE. We further omit aspects
regarding, e.g., efficient packing, and give a simplified but conceptually identical
description. For further details, we refer to the Kyber specification [Ava+17].

Algorithm 4.1 gives the key-generation procedure. The function SampleU
samples the (k × k)-matrix Â from uniform using the seed ρ, which is also part
of the public key. The sampling is performed directly in the NTT domain. Then,
the coefficients of s and e are sampled following a centered binomial distribution
with support [−η, η] using SampleB with seed σ. Afterward, the NTT is applied
to all component polynomials of s independently to receive the secret key ŝ. The
result t := As + e is the public key.

Algorithm 4.1 Kyber-PKE Key Generation (simplified)

Ensure: Public key pk , private key sk
1: Choose uniform seeds ρ, σ
2: Â ∈ Rk×kq := SampleU(ρ) . Generate uniform Â in NTT domain

3: s ∈ Rkq := SampleB(σ||0) . Sample private key s (binomial distribution)

4: e ∈ Rkq := SampleB(σ||1) . Sample error e (binomial distribution)
5: ŝ := NTT(s) . NTT for efficient multiplication
6: t := NTT−1(Â ◦ ŝ) + e . t := As + e
7: return (pk := (t, ρ), sk := ŝ)
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Encryption is shown in Algorithm 4.2. After recomputation of Â from the
seed ρ, the variables r, e1, e2 are sampled. The seed τ used for this sampling is
made explicit to allow the re-encryption required for the CCA2 transform. The
ciphertext c consists of two parts, where the second component c2 contains m
encoded as an element in Rq. The decryption process (Algorithm 4.3) requires
to recover this m from a noisy version.

Algorithm 4.2 Kyber-PKE Encryption (simplified)

Require: Public key pk = (t, ρ), message m, seed τ
Ensure: Ciphertext c

1: Â ∈ Rk×kq := SampleU(ρ) . Regenerate uniform Â

2: r ∈ Rkq := SampleB(τ ||0)

3: e1 ∈ Rkq := SampleB(τ ||1) . Sample noise r, e1, e2

4: e2 ∈ Rq := SampleB(τ ||2)
5: r̂ := NTT(r) . NTT for efficient multiplication

6: c1 := NTT−1(Â
T
◦ r̂) + e1 . c1 := AT r + e1

7: c2 := NTT−1(NTT(t)T ◦ r̂) + e2 + Encode(m) . c2 := tT r + e2 + Encode(m)
8: return c := (c1, c2)

Algorithm 4.3 Kyber-PKE Decryption (simplified)

Require: Public key pk = (t, ρ), secret key sk = ŝ, ciphertext c = (c1, c2)
Ensure: Message m

1: m := Decode(c2 − NTT−1(̂sT ◦ NTT(c1))) . m := Decode(c2 − sT c1)
2: return m

The Kyber authors originally specified three parameter sets. In this work, we
primarily focus on the original Kyber768 set given by (n = 256, k = 3, q =
7681, η = 4). Kyber512 and Kyber1024 mainly differ in the used k. Since we
will target individual NTT executions, k does not impact attack performance, at
least as long the success probability on single NTTs is close to 1. We note that
the Kyber parameters were tweaked for round 2 of the NIST standardization
process. These parameter sets feature (q = 3329, η = 2).1 We will later show
that this change is beneficial to our attack. Note that we will always use the
original parameter set unless stated otherwise.

4.1.2 Efficient and Secure Implementation

The rising popularity of lattice-based cryptography in the last decade has also
led to many efficient constant-time implementation techniques. As already stated
above, the NTT allows efficient multiplication in Rq by pointwise multiplying
two forward transformed polynomials and transforming the result back. A

1The new parameter set also requires some minor modifications to the NTT, such as different
constants and omission of the last butterfly layer.
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detailed description of the NTT is provided in Section 3.1. Besides that, there
is opportunity to achieve more efficient and constant-time implementations by
using device-specific functionality.

Early implementations of the NTT often used straightforward and variable-
time modular reduction techniques. For instance, de Clercq et al. [Cle+15] use
ARMs conditional operations for reductions after additions and subtractions, as
well as integer divisions for reductions after multiplications. On most embedded
devices, such divisions do not run in constant time.

More recent implementations, e.g., the Cortex-M optimized NewHope im-
plementation by Alkim, Jakubeit, and Schwabe [AJS16], frequently make use
of constant-time variants of the established Montgomery and Barrett reduction
techniques. Constant-time is reached by omitting the final conditional subtrac-
tions. In other words, the result is not always reduced back to [0, q − 1], but can
be larger. This can also be used for efficiency gains by, e.g., skipping reductions
after additions (lazy reduction).

4.1.3 Protected Implementations

Constant-time operations mitigate timing attacks, both on small devices such
as microcontrollers and large ones like PCs. Protecting against other types of
side-channel attacks, e.g., differential power analysis (DPA), requires more effort.
There do already exist works addressing this issue and proposing DPA-secured im-
plementations of lattice-based cryptography; they use masking (cf. Section 2.2.1)
as their main protection mechanism [Rep+15b; Ode+18; Bar+18].

Since the NTT is a linear transformation, it is trivial to mask. When s is the
sensitive input, then one can sample a uniformly random masking polynomial
m ∈ Rq, compute the NTT on m and (s−m) independently, and finally add the
shares back again if needed. Masking the sampling of error polynomials and the
decoding of the noisy message in decryption is much more intricate. Since we do
not attack these operations, we refer to Oder et al. [Ode+18] for details.

Oder et al. [Ode+18] further employ hiding techniques. They shuffle the
ordering of linear operations, such as the pointwise multiplication, and blind
polynomials with a random scalar. The latter method was first introduced by
Saarinen [Saa18].

4.2 Single-Trace Attacks on Lattice-Based Cryp-
tography

Masking is very efficient in protecting against DPA-like attacks. Still, single-
trace attacks are potentially able to bypass masking as well as other defenses.
There do already exist earlier works showing the feasibility of such attacks in the
context of lattice-based cryptography. Recently, horizontal side-channel attacks
on matrix-vector multiplications found in schemes over unstructured lattices,
such as Frodo [Alk+17b], were demonstrated [Ays+18; Bos+18b]. These attacks,
however, do not carry over to schemes using structured lattices, as they typically
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use faster multiplication methods such as the NTT or Karatsuba’s method.2

In Chapter 3 we proposed a 3-step single-trace attack on the NTT that is also
the basis of this work. First, we perform a side-channel template matching on
each modular operation performed during the inverse NTT in the decryption
process. In the second step, we combine the information of every operation in the
entire NTT by representing the FFT-like structure of the NTT as a factor graph
and then applying SASCA as described in Section 2.1.3. Finally, we combine
the knowledge of some secret intermediate variables with the public key in order
to reveal the private key. We now introduce additional background and then
discuss some of the shortcomings of existing works.

Single-Trace Attacks on the NTT. As shown in Chapter 3, by running a
soft-analytical side-channel attack (SASCA), one can recover the secret NTT
inputs after observing just a single trace. Concretely, one can recover the inputs
of the inverse NTT in decryption (Algorithm 4.3), and can then derive the
key s.3 The NTT appears to be a fitting target for SASCA since each stored
intermediate variable is computed using relatively simple combinations (additions
and subtractions) of just two intermediate variables of the previous NTT layer.

Figure 4.1 demonstrates how one can construct a factor graph for the NTT.
Figure 4.1a shows a single butterfly for reference. Note that since such a butterfly
is equivalent to a length-2 NTT, we denote the outputs as x̂0 and x̂1. Figure 4.1b
then depicts the corresponding factor graph that was used in the previous work.
In this graph, variable nodes and factor nodes are represented by circles and
squares, respectively. The factor nodes can be further split into two groups.
Factor f` models the observed side-channel information, i.e., the outcome of
the template matching. More concretely, we have f`(i) = Pr(x = i|`), where
x is the matched intermediate variable. Template matching on the modular
multiplication with ω can then be used to receive information on x1.

The second group of factors, consisting of fadd and fsub, then model the
deterministic relationships between the variable nodes as specified by the NTT.
For, e.g., the addition in the upper branch, we get:

fadd(x0, x1, x̂0) =

{
1 if x0 + x1ω = x̂0 mod q

0 otherwise

Due to the deterministic nature of fadd and fsub, the factor-to-variable update
rule stated in Equation 2.2 can be computed in time O(q2) by simply enumerating
all q2 possible input combinations. Our previous work can decrease the runtime
to O(q log q) by using cyclic properties of modular addition and FFTs of length
q.

2Aysu et al. [Ays+18] do also run their attack for the RLWE-based scheme
NewHope [Alk+17a]. However, their attacked implementation uses schoolbook multiplication
instead of the NTT, resulting in a drastically increased runtime.

3The target is the original LPR scheme, which has very similar encryption and decryption
routines.



4.3. Reaching Practical Single-Trace Attacks 47

x1
x2

x3
x4-

+ω
(a) Single butterfly

𝑓add

𝑥1

𝑥0

𝑓sub

𝑓𝓁

�̂� 0

�̂� 1

(b) FG from Chapter 3

𝑓bf𝑓𝓁

𝑓𝓁 

𝑥0

𝑥1

�̂� 0

�̂� 1

(c) Our FG

Figure 4.1: Comparison of a single butterfly with possible factor-graph representa-
tions.

Shortcomings. While our previous work demonstrates the possibility of side-
channel attacks on the NTT, the attack falls somewhat short of being fully
practical.

We perform template matching on modular multiplications. This requires
constructing templates for all possible combinations of x1 and ω taking q and
n/2 possible values, respectively. For our evaluated parameter set, also featuring
(n = 256, q = 7681), close to a million templates are required. Each template
is constructed using 100 traces, thus summing up to 100 million traces used
for evaluation. We also assume time-invariance of leakage, which allows us to
condense analysis to just that of butterflies without regarding its position in the
trace. This assumption might not always hold (cf. Section 4.5.2).

In addition, we attack the variable-time NTT implementation by de Clercq et
al. [Cle+15], which makes use of ARMs conditional instructions and variable-time
integer division. Note that the attack as such does not require timing leakage, it
can easily be adapted to constant-time implementations. However, the inclusion
of timing information is beneficial to attack performance. Thus, the applicability
to constant-time implementations is unknown.

Finally, we note that the butterfly factor graph shown in Figure 4.1b contains
short loops, which is detrimental to the performance of BP. In fact, due to
the bipartite and singly-connected nature of factor graphs, no shorter loops are
possible in any such graph.

4.3 Reaching Practical Single-Trace Attacks

We now address these problems and show how single-trace attacks on the NTT
can be made truly practical, even on constant-time implementations. First,
in Section 4.3.1, we decrease the number of required templates. In combination
with the lack of timing information, the attack now fails. For this reason, we
adopt several improvements to the belief-propagation algorithm for our scenario,
as explained in Section 4.3.2. Then, in Section 4.3.3, we explain why attacking
encryption instead of decryption can boost performance even further.
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4.3.1 Decreasing the Number of Templates

Our method to decrease the number of required templates and thus also traces
for template building to a more considerate amount is relatively simple. Instead
of performing a template matching on modular multiplication and constructing
templates for each possible input combination, we target loading/storing of
butterfly inputs/outputs to and from RAM (cf. Figure 4.1c using leakage of just
loading inputs). In addition, we do not construct templates for every single
possible value, but only for Hamming weights. Under ideal circumstances, this
limits the number of templates to just dlog2 qe + 1 = 14, which, compared
to the previous attack, is a reduction by a factor of over 70 000. Apart from
this reduction, (univariate) Hamming-weight templates are also significantly
easier to port from one device to another (compared to multivariate value-based
templates).

As it turns out, however, the information loss due to switching to such simpler
templates and additionally losing all timing leakage–we only target constant-
time implementations–is too high. The attack fails, even for the noise-free case.
For this reason, we will now propose improvements to the attack, which allow
successful message recovery for such a more constrained attacker.

4.3.2 Improving Belief Propagation for the NTT

There already exists a large body of work studying ways to improve the perfor-
mance of belief propagation in cyclic factor graphs. We adopted three concrete
methods for use with the NTT and will now describe them in depth.

Butterfly Factors. The factor graph shown in Figure 4.1b contains very short
loops, which, especially in conjunction with deterministic factors, can lead to
convergence problems and overall bad performance of loopy BP [Sto03]. Such
network configurations and the resulting problems are however not exclusive to
the NTT. As shown by Storkey [Sto03] and Yedidia [Yed03], similar problems also
appear when applying BP to other FFT-like networks. Storkey analyzes BP in
context of ordinary real-valued FFTs, whereas Yedidia focuses on Reed-Solomon
codes, which can be represented by NTTs/FFTs over GF(q).

To increase BP performance, both Stork and Yedidia propose to cluster the
factors belonging to the same butterfly and thereby enforce all of its input/output
relations at once. We follow their approach and replace factors fadd, fsub with a
single butterfly factor fbf. As seen in Figure 4.1c, this eliminates the loop inside
each butterfly. The full factor graph of the NTT, built by connecting multiple
instances of the butterfly FG (cf. Figure 3.1), will still contain loops. These loops,
however, are longer, which will lead to increased performance. Yedidia notes that
this clustering constitutes a simple form of generalized belief propagation [Yed03;
YFW00]. Butterfly factors are specified as:

fbf(x0, x1, x̂0, x̂1) =

{
1 if x0 + x1ω = x̂1 mod q and x0 − x1ω = x̂1 mod q

0 otherwise
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With the increased accuracy, however, comes also an increase in computational
runtime. By making use of an FFT of length q, the update rules for fadd and
fsub can be evaluated in time O(q log q). This does not carry over to fbf. Instead,
all input combinations need to be enumerated, thereby increasing the runtime to
O(q2).

For typical parameters of lattice-based encryption, with q ≈ 213−214 [Ava+17;
Alk+17a], this is still very much practical, as will later be demonstrated. For the
moduli used by lattice-based signatures, e.g., the schemes Dilithium [Lyu+17]
and qTesla [Bin+17] both use q ≈ 223, practicality cannot be claimed anymore.
When also considering that the NTT in, e.g., Dilitihium, consists of 210 butterfly
invocations, then it becomes clear that the previous method with split factors
needs to be used there.

Optimized Message Schedule. Another property that can influence con-
vergence and accuracy in loopy BP is the chosen message schedule, i.e., the
order in which messages are computed and passed between nodes. The most
straightforward schedule is to update all variable or factor nodes simultaneously.
This approach is followed in Chapter 3. When using the original representation
of Figure 4.1b, then completing a loop requires just 2 iterations of evaluating
Equation 2.1 and Equation 2.2 (for our proposed representation, this number
increases to 4). It, however, can take up to 2 log2 n iterations for any two nodes
in the full NTT graph to communicate.

This is clearly not ideal, which is why we adopt the schedule also used by
Storkey [Sto03]. That is, we first pass messages from the NTT input to the
output (layer by layer), and then back again. This does not affect the number
of iterations required for completing a loop but allows any two nodes in the
factor graph to communicate in just a single iteration. This becomes especially
advantageous when changing the target to encryption, which features inputs with
small support.

Message Damping. While the above two methods greatly increase accuracy,
convergence is still not guaranteed. For this reason, we finally also adopt message
damping. It aims to dampen oscillations by computing a weighted average of
the new and the previous message. When denoting α as the damping factor and
uprev
n→m as the message sent from node to factor in the previous iteration, then

the dampened version of Equation 2.1 is:

un→m(xn) = α

 ∏
m′∈M(n)\{m}

vm′→n(xn)

+ (1− α)uprev
n→m(xn) (4.1)

For all of our later experiments, we set the damping factor α to 0.9.
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4.3.3 Changing Targets

The decryption process described in Algorithm 4.3 involves the secret key s and
is thus the obvious first target of a side-channel attack. We now argue that
encryption, while not involving s, can also be a very interesting target and is
significantly easier to attack.

First, encryption only deals with ephemeral secrets. While this means that
the side-channel attack has to be performed for each individual message, the lack
of long-term secrets makes it very tempting to use implementations devoting
fewer resources for side-channel protections, or maybe even an unprotected
implementation. We want to prove this intuition wrong.

Second, the Fujisaki-Okamoto CCA2-transform employed by Kyber and
many other lattice-based KEMs requires a re-encryption of the message. The
message is then only released if the recomputed ciphertext matches the received
one. This means that attacks are not restricted to sending devices, but can also
be mounted on the receiving end, i.e., on devices having access to the secret key.

Third, encryption involves an NTT with inputs over a very narrow support:
error polynomials follow a centered binomial distribution over [−η, η], with η = 4
in our analyzed parameter set. The inputs to the inverse NTT in decryption,
however, can be considered uniform in Zq. Information on the narrow support
can easily be integrated into the factor graph; it suffices to apply Bayes’ theorem
to the leakage-likelihood obtained in the input layer and use the result in the
factor nodes f`. The first iteration of our forward-backward message passing
then immediately spreads the information to all later layers and ensures, e.g.,
that in the second layer, only (2η + 1)2 values have a non-zero probability. The
narrow support allows BP to pick the correct value under much more noise, as
we will later demonstrate.

Fourth and finally, we note that key generation (Algorithm 4.1) also features
an NTT with small inputs, namely that of the private key s. Thus, our attack
also applies here. This becomes interesting on devices which either use the plain
IND-CPA secure scheme described in Section 4.1.1 and thus only use ephemeral
keys, or only store the seed σ and regenerate s each time to save space in secure
non-volatile storage.

Attacking Encryption. For the actual attack on encryption, we target the
forward NTT of r, found in Line 5 of Algorithm 4.2. We picked this invocation
of the NTT, since all others in Algorithm 4.2 work on polynomials which are
uniform over Zq. Since r ∈ Rkq is comprised of k polynomials, we have to attack
all k independent invocations of the NTT. Then, we can compute the message m
by using Line 7. That is, m = Decode(c2 − tT r) = Decode(e2 + Encode(m)).

4.4 Evaluation and Additional Scenarios

After having described our attack in depth, we now evaluate it using leakage
simulations and additionally explore more attack scenarios. First, in Section 4.4.1,
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we analyze the improvements proposed for BP in the context of the NTT. Then, we
focus on implementations employing the masking countermeasure in Section 4.4.2.
In Section 4.4.3, we finally study the effects of state-of-the-art implementation
techniques.

Leakage Simulation. For all our simulations, we make use of the established
Hamming weight with additive Gaussian noise model. Thus, when processing a
value x, we receive simulated leakage ` = HW(x) +N(0, σHW). Here, HW denotes
the Hamming-weight function, and N(0, σHW) describes a random sample from
the normal distribution with zero mean and standard deviation σHW.

For each simulation run, we generate one such sample for each intermediate
state variable. Thus, we have n samples in each layer (including inputs and
outputs), this sums up to n(log2(n) + 1) = 2 304 samples. Note that in practice,
intermediate variables in inner layers of the NTT would leak twice: once during
storing, once during loading. For the sake of simplicity, we only generate a single
sample here. Finally, we perform a template matching on all generated samples
and retrieve the corresponding conditioned probabilities Pr(X = x|`).

Attack Implementation. We implemented our evaluations and attacks, in-
cluding the belief-propagation algorithm, in Matlab. The most time-critical
component, namely the factor-to-variable update of butterfly factors fbf, was
outsourced to multi-threaded C++ code. We performed up to 50 full message-
passing iterations but abort as soon as convergence is reached for all variable
nodes in the network. All experiments were run on an Intel Xeon E5-4669 v4
(2.2 GHz).

Evaluation of attack performance is done for varying values of σHW. For each
scenario and analyzed noise level, we performed at least 100 experiments. We
computed the success rate by counting the experiments where belief propagation
correctly classifies all n NTT inputs, i.e., assigns the highest probability to the
correct values.

4.4.1 Evaluating Improvements to BP

For our first evaluations, we analyze the effects of the improvements proposed
in Section 4.3.2: the introduction of butterfly factor nodes, a changed message
schedule, and the use of damping. This evaluation also doubles as a general
analysis of the noise resistance of our attack.

We target a generic constant-time but otherwise unprotected implementation
of the Kyber-NTT. The exact internal operations of this implementation are not
important, at least as long the factor graph model and the actual implementation
are consistent regarding the attacked intermediate variables. As we target the
loads and stores at the inputs and outputs of butterflies, the exact methods used
for, e.g., modular multiplication, are mostly irrelevant.

Figure 4.2 shows the outcome, for both the original (q = 7681, η = 4) and the
tweaked (q = 3329, η = 2) Kyber parameter sets. Without the improvements,
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but still using the same load/store leakage, a success rate of more than 0.9
can be maintained up to and including σHW = 0.9. With our changes, this
threshold is increased to σHW = 1.5. When computing an SNR and thus looking
at the variance σ2

HW, then this difference corresponds to almost a tripling of the
acceptable noise level. The smaller values used by the new parameter set lead
to a slight improvement in the success rate. On a single core of our system,
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Figure 4.2: Comparison of the attack success rate, with and without the optimizations
proposed in Section 4.3.2. The improved version was evaluated for both
the original (q = 7681) and tweaked (q = 3329) parameter sets.

the runtime of a full forward-backward iteration of belief propagation using
q = 7681 is roughly 2 minutes. In low-noise cases, 2 such iterations are already
sufficient. For σHW = 1.5, the average number of iterations (for convergent
experiments) rises to 9. For this noise level, all failed experiments correspond to
non-convergence of BP.

4.4.2 The Case of Masking

As noted in Section 4.1.3, masking the NTT is straightforward. So is, at least
in theory, the adaptation of a single-trace attack to the masked case. One can
simply recover each share individually and add them up to receive the unmasked
input. This approach is used in Chapter 3. According to the evaluations, masking
alone does not significantly decrease the attack success rate. In our scenario, this
is no longer the case. We specifically target the NTT of r due to the small input
coefficients. When using masking, this advantage is lost, as all input coefficients
become uniformly distributed over Zq.

We reintroduce the information on the narrow support as follows. Instead
of running belief propagation on two factor graphs corresponding to the two
shares individually, we adjoin graphs at the input layer using factor nodes fbino.
These nodes ensure that the sum of the two inputs is consistent with the centered
binomial distribution over [−η, η]. When using Bη to denote the density of
said distribution, and x′, x′′ as the two shares of the input, then we can write
fbino(x′, x′′) = Bη(x′ + x′′ mod q).

Figure 4.3 shows the simulation results. Running BP on the shares inde-
pendently does not yield satisfactory results, even for perfect Hamming-weight
leakage. The introduction of fbino brings the success rate close to 1, at least
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when σHW ≤ 0.3. While this is a drastic reduction compared to the unprotected
case, it at least allows attacks in low noise scenarios. Here, also note that our
attacker only uses Hamming-weight templates. A more powerful adversary might
attack masked implementations even in high-noise settings.
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Figure 4.3: Success rate of our attack on a masked implementation, both using
independent factor graphs and joined graphs.

4.4.3 The Case of Lazy Reductions

Up until now, we analyzed a relatively generic implementation of the NTT.
There, operands are always in the range [0, q− 1]. As mentioned in Section 4.1.2,
this is not true for many recent implementations. They make use of constant-
time variants of the Montgomery and Barrett reduction, both of which do not
necessarily reduce operands down to the base range. Instead, they reduce to
a representative (of the equivalence class) only guaranteed to be smaller than,
e.g., 216. Also, reductions after, e.g., additions, can be skipped for performance
improvements (lazy reduction).

Such an implementation could, at least theoretically, be attacked using the
same factor-graph representation. After performing the template matching on
the now larger range of possible values, one could compute the probability of each
equivalence class by summing up the probability of each possible representative.
Due to just using Hamming-weight leakages, we do not think that such an
approach is fruitful.

Instead, we modify the graph to directly model the changed operations. Con-
cretely, we target the assembly-optimized ARM Cortex M4 implementation of
Kyber provided by the PQM4 library [Kan+]4. It uses Montgomery reductions
after modular multiplications and Barrett reductions after additions and subtrac-
tions. Reductions after additions are skipped in each other layer. We integrate
all that in the butterfly factors. When denoting MRed and BRed as the used
reduction routines, and looking at a layer where no reduction is skipped, then

4Shortly after the initial publication of this article, the Kyber implementa-
tion in PQM4 was updated. For reference, we used the version found at
https://github.com/mupq/pqm4/releases/tag/Round1.

https://github.com/mupq/pqm4/releases/tag/Round1
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we have

fbf(x0, x1, x̂0, x̂1) =

1 if BRed(x0 + MRed(x1ω)) = x̂0 and
BRed(x0 + 4q −MRed(x1ω)) = x̂1

0 otherwise

The results of the simulations using this model are shown in Figure 4.4. The
analyzed implementation only supports the original parameter set with q =
7681, which is why we limit analysis to this scenario. Note, however, that our
earlier results indicate better attack performance for the tweaked parameter set.
Compared to our earlier results, the 90% success-rate threshold is now decreased
to σHW = 1.3. As an effect of the larger input ranges, the single-core runtime of
a full iteration increases to approximately 8 minutes.
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Figure 4.4: Success rate of our attack when modeling constant-time and lazy reduc-
tions.

4.5 Attacking a Real Device

The previous section already analyzed an optimized microcontroller implemen-
tation, but still resorts to leakage simulations. We now show that our attack
carries over to an actual device.

4.5.1 Measurement Setup

The ARM Cortex M4 appears to be the standard target for embedded software
implementations of post-quantum cryptography [AS18]. For this reason, we
also performed our side-channel analysis on such a device. More concretely,
we performed power measurements of an STM32F405 microcontroller atop the
STM32F4 target for the ChipWhisperer UFO board [New]. The power consump-
tion was measured using an AD8129A differential amplifier across an onboard
shunt resistor. The 8 MHz device clock was externally generated using a function
generator. This was done to simplify synchronization across traces.

This device then ran the optimized Kyber implementation of the PQM4
library [Kan+], which we already targeted in the previous section. More correctly,
we only run the forward NTT of error polynomials. Each trace captures an
entire NTT execution; we used a dedicated trigger pin to signal the start and
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end of this operation. We recorded 2 000 traces and then split this set into 1 900
templating traces and 100 attack traces. Note that, while both sets of traces
were recorded on the same device, the use of simple univariate Hamming-weight
templates makes porting of templates to similar but different devices much more
realistic compared to the previous attack.

4.5.2 Trace Analysis and Attack

As we want to demonstrate practicality, we keep the trace analysis relatively
simple by using univariate Hamming-weight templates. For determining the
position of leaking operations, we run a correlation analysis along the entire
length of the traces, for each of the 2 304 attacked intermediate variables. The
single position of the highest peak (in absolute value) was then selected as point
of interest.

The switch to Hamming-weight templates would ideally allow a reduction
to just 14 templates. However, we found that the power leakage does show a
certain degree of time dependence. Even after basic trace normalization, such
as pointwise subtraction of the mean and normalization to a standard deviation
of 1, the same operation showed slightly different behavior when executed at a
different point in time. We suspect the different flow of instructions preceding
our attacked operations, alongside the low-pass behavior of the power network,
to be the cause.

Construction of templates for each position is still not required, as we follow
an intermediate approach. We build two sets of templates for each NTT layer.
The first set targets the upper branch in all butterflies of the respective layer,
the second set targets the lower branch (cf. Figure 4.1a). Each template is thus
used n/2 = 128 times. As not all Hamming weights are possible in all layers, one
has to build a total of 213 templates.

After matching these templates on an attacked trace, we use the factor-graph
representation already established in Section 4.4.3. Out of our 100 performed
experiments, 83 yield the correct NTT input. Since we need to attack k = 3
independent NTTs, the total success rate can be estimated to be 0.833 ≈ 0.57.

4.5.3 Increasing the Success Rate

The stated success rate can be improved by making use of lattice-reduction
techniques. Previously, we defined an attack to be successful if all n NTT inputs
are correctly recovered. For the full Kyber scheme, one needs to accomplish this
k times to recover all nk coefficients of r.

One can, however, also recover the message when only using the nk − l
most probable coefficients, for some small l. That is, one only picks the nk − l
coefficients where the final probability of the most likely value is closest to 1.
These values are then plugged into the equation c1 := AT r + e1, the remaining l
coefficients can then be recovered using lattice-reduction techniques. Such an
approach was also used by in our previous work Chapter 3, which is why we do
not give further details here.



4.6. Countermeasures 56

When using l = 120, a conversion to unique-SVP [Alb+17], and the BKZ
lattice-reduction algorithm with block size 25, then the unknown coefficients can
be recovered in approximately 5− 10 minutes. When picking k = 3 out of the
100 real experiments at random, then the success rate is increased to 0.95 when
using this approach with the stated parameters.

4.6 Countermeasures

In the previous sections, we established that single-trace attacks on the NTT
can be made truly practical. Several improvements to the underlying use of
belief propagation in conjunction with the exploitation of small coefficients allow
attacks even with simple Hamming-weight templates. This clearly shows that
countermeasures are needed even for encryption where no long-term secrets are
involved. We now discuss some possible options.

Masking. Masking is firstly a DPA countermeasure, but in our scenario also
somewhat counteracts single-trace attacks. They are still possible, as shown in Sec-
tion 4.4.2, but the acceptable noise level is drastically decreased. Nonetheless,
further countermeasures are likely needed to protect against more sophisticated
attackers.

Blinding. Saarinen [Saa18] and Oder et al. [Ode+18] make use of a blinding
technique, which can be seen as a simple form of masking. They blind the
two to-be-multiplied polynomials by first multiplying them with two random
scalars (a, b) ∈ Zq. The product is then unblinded via a multiplication with
(ab)−1 mod q. Note that this scalar blinding does keep the narrow support of,
e.g., r, intact. The concrete values of the support are however changed. Such a
countermeasure might not be able to prevent attacks. First, one can mount a
horizontal side-channel template attack, e.g., on all n multiplications with a, to
recover the fixed blinding value. Second, one can model the blinding value as an
additional variable node in the factor graph and let belief propagation recover
its value. We do not further study these scenarios here.

Shuffling. Similar to other algebraic side-channel attacks, shuffling is probably
a very effective countermeasure. By randomizing the order of executed oper-
ations within each NTT layer, the leakage points cannot be trivially assigned
to the correct variable nodes anymore. Note that shuffling linear operations,
such as pointwise multiplications, was proposed by Oder et al. [Ode+18], but
does not affect an attack on the NTT. We leave an analysis of the required
granularity of shuffling and the overall cost of this countermeasure for future work.
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5
A Primer on

Active Implementation Attacks

I don’t know exactly what went
wrong, but I know it’s always my
fault.

Homer Simpson - The Simpsons

Active implementation attacks circumvent security mechanisms on electronic
devices by causing small hardware corruptions during the execution of normal
device functions. A typical way of performing active implementation attacks is
to put the target device outside of its operational specification (clock frequency,
temperature, supply voltage) to force the occurrence of faulty behavior with,
ideally, a specific effect and at a specific point in time. The resulting effect of an
induced fault typically ranges from skipping entire (sequences of) instructions to
setting the contents of registers or outcomes of computations to known/unknown
values. These effects can then, if timed correctly, be used to bypass various
security mechanisms present on the target device.

In practice, the reliability/precision of fault inductions highly depends on the
available laboratory equipment, the target device, and the concrete exploitation
method. Less precise fault induction setups may cause unintentional (side-)effects
that differ with each fault induction attempt. The exploitation then becomes a
much more time-consuming endeavor. In general, attackers try to minimize the
number of fault induction attempts such that exploitation is possible within a
reasonable amount of time.
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Waveform Generator
Computer

> python glitch.py 

setting glitch parameters... DONE 

collecting ciphertexts... DONE 

testing key candidates... 

 

Microprocessor

Figure 5.1: A simple fault attack setup using voltage glitching.

A simple example of a fault attack setup is shown in Figure 5.1. Here, a
microprocessor is connected to a computer to provide a basic communication
interface. The microprocessor is additionally connected to a waveform generator
which serves as the power supply. In this scenario, an attacker can configure
the waveform generator to insert a sudden voltage drop in the power supply at
a specific point in time. The resulting temporary faulty behavior can then be
potentially exploited by the attacker in various ways, e.g., depending on whether
the faulty behavior affects the execution of firmware itself or the execution of a
particular cryptographic computation.

In the former case, an attacker could attempt to boot the target device with
a modified firmware image from an external storage chip that exposes sensitive
internal memory contents to a public communication interface. Doing so is,
however, not necessarily straightforward since secure boot procedures on the
device typically verify the authenticity of a firmware image before use. In this
situation, a fault induction can help an attacker, either by forcing a false positive
outcome of the authenticity check or by simply skipping the authenticity check
entirely.

Alternatively, an attacker may also choose not to target the firmware itself
but instead extract a cryptographic key that is used by the device for sending/re-
ceiving sensitive information. The analysis of fault inductions on cryptographic
computations already has a long history that reaches back about two decades
to the seminal work of Boneh et al. [BDL97] in 1997. After they pointed out
the importance of releasing only correctly computed RSA signatures, it quickly
became clear that also symmetric cryptographic schemes are susceptible. Since
then, the analysis of fault inductions on cryptographic algorithms has attracted
a great amount of interest from industry and the academic research community,
and many more different kinds of cryptanalytic methods have been developed
to exploit erroneous computations for all kinds of cryptographic algorithms. In
the following, we describe different methods of exploiting and counteracting fault
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inductions on implementations of symmetric cryptography that are particularly
relevant to our later presented contributions.

5.1 Overview of Active Implementation Attacks

In the context of symmetric cryptography, a rich field of research emerged that
focuses on techniques to recover the secret key from faulty ciphertexts, starting
with the differential fault attacks (DFA). Since then, more exploitation methods
have been proposed such as statistical fault attacks (SFA) and ineffective fault
attacks (IFA) that are particularly relevant to this thesis.

5.1.1 Differential Fault Attacks (DFA)

DFA was introduced by Biham et al. and makes use of techniques from dif-
ferential cryptanalysis to learn about key-dependent intermediate variables of
cryptographic computations [BS97]. More concretely, DFA uses the observation
that results of correct and faulty cryptographic computations of the same in-
put contain information on the internal state of the computation, which allows
learning information about the used key.

One often discussed application of DFA is on implementations of block ciphers
such as AES [DR20] (described in Appendix A.1). In this scenario, an attacker
performs two encryptions of the same plaintext and induces a fault into one of
the computations. The location of the fault induction should be chosen such that
(1) a partial key guess can be used to decrypt a faulty ciphertext to the location
of the fault induction and (2) the partial decryption involves a nonlinear layer
followed by a linear mixing layer. In the case of AES, a fault induction at or
slightly before the penultimate round of the block cipher typically satisfies these
requirements, as illustrated in Figure 5.2. The requirements on the physical
effect of the fault induction on an intermediate variable are quite relaxed, i.e.,
any kind of modification can lead to a faulty ciphertext that is exploitable.

The exploitation itself consists of a partial decryption of both, the affected
faulty bits of the ciphertext, and their correct counterpart, back to the location
of fault induction using guesses of the involved key bits. If the partial key
guess is correct, the difference between the partial decryption of valid and faulty
ciphertext bits should only be somewhat small, e.g., affect only one intermediate
value of the cipher state. If the partial key guess is incorrect, one would typically
observe a larger difference between the partial decryption of valid and faulty
ciphertext. In the best case, the observation of just a single pair of valid/faulty
ciphertext that corresponds to the same plaintext may already lead to a full key
recovery [TMA11a].

5.1.2 Statistical Fault Attacks (SFA)

SFA was introduced by Fuhr et al. [Fuh+13] as a method to recover the secret key
from block cipher implementations and works in random and unknown plaintext
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Figure 5.2: Simple illustration of DFA attacks on AES implementations. The attacker
performs two encryptions of the same plaintext (a), once with a fault
induction before MixColumns in the penultimate round (b).

scenarios. Consequently, while attacks like DFA require repeated computations
of the same input under the same key, SFA is applicable even if inputs are
constantly changing, e.g., in the case of nonce-based encryption. In SFA, the
attacker collects faulty ciphertexts encrypted with the same key. Unlike other
fault attacks like DFA, SFA requires fault inductions that introduce a bias in the
distribution of certain intermediate values that would otherwise have followed
a uniform distribution due to the cipher properties. The location of the fault
induction should be chosen such that (1) a partial key guess can be used to
decrypt a faulty ciphertext to the location of the fault induction and (2) the
partial decryption involves a nonlinear layer followed by a linear mixing layer.

Given such a set of faulty ciphertexts, the attacker can partially decrypt
every ciphertext back to the location of fault induction for each key candidate
and measure the squared euclidean imbalance (SEI) of this value. The SEI is a
measure of the distance between a given distribution and the uniform distribution.
If we consider the case where we analyze the distribution of an 8-bit intermediate
variable x and its concrete observations xi with 1 ≤ i ≤ n, the SEI can be
calculated as:

SEI(x) =

255∑
δ=0

(
#{i|xi = δ}

n
− 1

256

)2

,

where δ denotes one of the possible values of x. If the location and effect of the
fault induction were chosen correctly, then a wrong partial key guess leads to a
uniform distribution, while the correct one leads to a biased distribution. Then,
the key candidate that gives the highest SEI is most likely the correct one.
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If we consider SFA attacks on AES implementations, a suitable location for a
fault induction is before MixColumns in the penultimate round, as illustrated
in Figure 5.3. The attacker can then guess 4 bytes of the last round key K10 and
partially decrypt each faulty ciphertext C to obtain a partial state S9:

S9 = MC−1 ◦ARK(K9)−1 ◦ SB−1 ◦ SR−1 ◦ARK(K10)−1 ◦ C, (5.1)

where SB, SR, MC and ARK represent the AES round functions (cf. Appen-
dix A.1). Then, the attacker can evaluate the distribution of the bytes in S9

and perform key recovery. Note that when using the SEI metric, no information
on the penultimate round key K9 has to be guessed because the constant key
addition has no influence on the non-uniformity of the observed distribution.

While SFA was originally only evaluated on implementation of the AES block
cipher, a more recent work has shown that SFA is in fact also applicable to a
wide range of AES-based authenticated encryption schemes that are based on
modes like GCM, CCM, and OCB [Dob+16].
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Figure 5.3: Simple illustration of SFA attacks on AES implementations. The attacker
performs multiple encryptions with different plaintexts and faults each
computations (a) before MixColumns in the penultimate round (b).

5.1.3 Ineffective Fault Attacks (IFA)

The main observation of IFA by Clavier [Cla07] is that the behavior of a device
in response to a fault induction may allow learning information on concrete inter-
mediate variables of cryptographic algorithms running on the device. Consider
an attacker that can set a certain intermediate variable during a cryptographic
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computation to a concrete value x by means of fault induction. The location
of the fault induction should be chosen such that a partial key guess can be
used to decrypt a ciphertext to the location of fault induction. If the attacker
nevertheless receives an correct output (ciphertext), which can be checked by
repeating the computation without fault induction, the faulted variable must
already have been x before the fault induction. In such a situation, the attacker
can make a partial key guess, partially decrypt the ciphertext back to the location
of fault induction, and check if the resulting value is x.

If we consider attacks on AES implementations, an attacker could set one
byte of the AES state before the last AddRoundKey operation to a known value
x. If such a fault induction is ineffective, the corresponding key byte is the Xor
between x and the corresponding byte of the ciphertext.

One upside of IFA, compared to the previously discussed attacks, is the fact
that IFA still works if the attacked implementation is equipped with a fault
countermeasure that performs redundant computations and only returns a result
if all of them match. On the other side, one downside of IFA is the strong
assumption that an attacker is able to deterministically change the value of an
intermediate variable to a known one.

5.2 Fault Attack Countermeasures

In order to prevent attackers from performing successful fault attacks, extensive
research on countermeasures has already been conducted in the last two decades.
These countermeasures can be roughly divided into two categories, depending on
their realization as sensors or on algorithmic level.

5.2.1 Sensor-based Countermeasures

Sensor-based countermeasures generally aim to increase the resilience of an
entire system, either by detecting fault inductions directly on the physical
level, or by detecting/correcting resulting errors. Examples of sensor-based
countermeasures include the usage of light, voltage, and temperature sensors
to detect fault inductions via lasers [Sel+15], voltage glitches [Bar+06], or
temperature variations [HS13]. Countermeasures like these already have a long
tradition in the smart card industry. While they can significantly increase the
difficulty of performing successful fault attacks, they should generally not be
considered to offer sufficient protection as they can be bypassed with a certain
additional reverse engineering effort. The focus of academic research mostly
excludes sensor-based solutions as they are typically tailored to specific industrial
devices, their design/analysis often requires large financial resources, and their
concrete protection guarantees are often hard to quantify. Consequently, in
practice, additional algorithmic countermeasures are typically used and serve as
a second line of defense.
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5.2.2 Algorithmic Countermeasures

Algorithmic fault countermeasures aim to detect or correct erroneous compu-
tations without reliance on hardware sensors. The most prominent example
of a detection-based fault countermeasure performs redundant executions with
subsequent consistency checks [Bar+06]. If applied to a cryptographic operation,
such as a block cipher, the encryption of plaintext is performed twice (or more
often). Then, the results of the redundant computations are compared, and the
ciphertext is only released if all of them match (see also Algorithm 5.1).

Algorithm 5.1 A Simple detection-based fault countermeasure.

Require: key K, plaintext P
Ensure: ciphertext C = EK(P ), or ⊥

1: C1 ← EK(P )
2: C2 ← EK(P )
3: if C1 6= C2 return ⊥
4: return C1

Besides fault detection, there also exist other approaches to counteracting
fault attacks, such as the usage of majority voting mechanisms for error correc-
tion [Bar+06]. The usage of error detection/correction techniques is not limited
to cryptographic computations either. The resilience of a device against faults can
be generally increased, e.g., by using error detection/correction in data memory1

or control flow integrity mechanisms that can detect most implausible deviations
of a program’s intended execution [WWM15].

1https://ibex-core.readthedocs.io/en/latest/03_reference/
security.html#register-file-ecc

https://ibex-core.readthedocs.io/en/latest/03_reference/security.html#register-file-ecc
https://ibex-core.readthedocs.io/en/latest/03_reference/security.html#register-file-ecc
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6
SIFA: Exploiting Ineffective Fault

Inductions on Symmetric Cryptography

Shortly after the seminal work of Boneh et al. [BDL97] showed fault attacks on
implementations of the RSA crypto system, it became clear that also symmetric
schemes are susceptible to this type of active implementation attack. Starting
with the differential fault attacks (DFA) of DES by Biham and Shamir [BS97], a
rich field of research emerged that focuses on techniques to recover the secret
key from faulty ciphertexts.

The effect of a fault induction on a cryptographic algorithm can be modelled
as the change of an intermediate variable x to a faulty intermediate variable
x′. Such a change can occur due to a direct modification of x, but also due to
instruction skips or addressing errors. Independent of the exact effect that leads
from x to x′, there are two approaches on how to prevent that this change is
exploited by an attacker. The first approach is to perform computations in a
redundant way. Then, one can determine the difference ∆ = x− x′ and suppress
the output in case it is non-zero. Corresponding redundancy techniques range
from simple temporal or spacial duplications to error detection codes. The second
approach for managing ∆ 6= 0 are infection-based countermeasures. In this case,
a cipher output is always provided but it is ensured that any non-zero ∆ in the
ciphertext is randomized such that it becomes useless for an attacker.

While most attack techniques and countermeasures focus on exploiting or
preventing information leakage in case ∆ 6= 0, the question of whether an attacker
can also learn information from ineffective faults has not been explored in depth
so far. In this work, we consider a fault induction to be ineffective in case the
fault induction (e.g., a voltage glitch) is performed, but a certain dependency
on the concrete processed data values renders it ineffective. In this case, even
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though it holds that ∆ = 0, information leakage on the secret key can still occur
since the occurrence of a ineffective fault itself is data-dependent.

Our Contribution. In this chapter, we generalize IFA attacks and introduce
statistical ineffective fault attacks (SIFA). As we argue and show with practical
evaluations, SIFA is typically not only applicable when SFA or IFA is applicable,
but also in a broader range of scenarios – in particular in the presence of
countermeasures. Our attack does not rely on a specific fault model. We
simply require that there is some data-dependency between the occurrence of an
ineffective fault induction and the targeted intermediate variable x. However,
the attacker does not need to know any further details of this dependency. This
means simply that the probability for changing an intermediate variable x due to
a fault induction is not the same for all values x. This bias of the probabilities
for ineffective fault inductions is the sole requirement on the fault induction.

Like IFA, SIFA can be applied in settings where it is possible to perform fault
inductions on encryption operations that process different data inputs using the
same key and allow to observe whether the fault induction was ineffective. In
the most simple case, we can consider a redundant block cipher implementation
that duplicates the plaintext and only returns a ciphertext if the result of the
redundant computations match. SIFA is applicable in this setting if an attacker
can (1) query this implementation with a certain amount of different plaintexts
(2) perform a fault induction at a certain point in time for one of the redundant
computations and (3) observe whether or not a ciphertext is returned to determine
the occurrence of a ineffective fault induction. While IFA typically requires strong
fault models like stuck-at faults, the requirements for SIFA on the fault induction
are minimal and corresponding faults can be induced easily in practice with a
high frequency and without the need for sophisticated laboratory equipment.

To show this, we attack protected implementations that feature countermea-
sures against fault attacks like SFA or DFA. In particular, we target countermea-
sures based on detection and infection. In fact, countermeasures that are based
on managing a fault effect ∆ 6= 0 are ideal targets for SIFA. These countermea-
sures allow the attacker to collect observations where the fault induction was
ineffective. Our empirical study shows that these countermeasures can be easily
bypassed in practice and that it is necessary to combine them with additional
countermeasures to provide protection against SIFA attacks.

Our concrete attack results are as follows. First, we target a detection-based
countermeasure for AES that uses simple time redundancy with subsequent
comparison using a fault induction setup that can temporarily corrupt the clock
signal at specific points in time. In order to show that SIFA is applicable
on a variety of different hardware platforms, our evaluation is performed on 3
different AES implementations, attacking 8-bit (table-based) and 32-bit (bitsliced)
software implementations as well as a hardware co-processor. In all cases, the
number of needed faulty encryptions is entirely practical for a physical attack.
SFA is not applicable here, since no exploitable faulty output is released. Although
IFA is not prevented by simple time redundancy with subsequent comparison, it
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still relies on precise stuck-at faults in certain bytes, which are hard to achieve
in practice. This is especially true in the case of the 32-bit software and the
hardware co-processor implementations. In contrast, SIFA can exploit any case
where ineffective faults lead to a biased distribution, even without knowledge
about the distribution of these values.

We then target infective countermeasures, where typically neither SFA nor
IFA are applicable. Here, we extend the software AES implementation from
the AVRCryptoLib [Avr] and evaluate our attack for multiple security parame-
terizations. Again, simple clock glitches are used to induce the required faults,
resulting in attacks that are rather easy to execute in practice and do not require
any expensive laboratory equipment.

Related Work. SIFA extends and connects several other ideas that have
previously been published in the literature. One keypoint of the presented attack
is the fact that it exclusively exploits cases where a fault does not change the result
of the computation. Therefore, our attack shares a common reference point with
safe-error attacks [YJ00] and IFA [Cla07]. In a safe-error attack, the value of an
intermediate variable is changed (fault effect ∆ 6= 0) and the knowledge whether
the faulted value is used or not is exploited. Typically, safe-error attacks are
used to attack asymmetric schemes. In contrast, ineffective fault attacks [Cla07]
exploit specific cases where ∆ = 0 and the fault shows no effect. More concretely,
IFA relies on strong and known fault models, like precise stuck-at-0 faults, in
order to probe values of intermediate variables.

We extend this idea from stuck-at faults as already used by Biham and
Shamir [BS97] to the case that ineffective faults lead to a non-uniform distribution
of intermediate variables. As a result, we do not probe specific intermediate
variables of a cryptographic; rather, we exploit their non-uniform distributions.
Hence, we are naturally able to deal with noise (e.g., failure of fault induction, or
faults induced at a wrong position). Our used methods to exploit non-uniform
distributions are related to those in SFA [Fuh+13].

Outline. First, we give a short overview of infection countermeasures in Sec-
tion 6.1. Then, we state the idea and show the working principle of the attack
in Section 6.2. Section 6.3 contains the results of our practical attack while
we discuss possible countermeasures in Section 6.4. We finally conclude in
Section 6.5.

6.1 Background

The strategy of commonly known detection-based countermeasures is to detect
that a fault changes an intermediate variable, e.g., by performing redundant
operations. That is, once a fault is detected, the computation is aborted and
no ciphertext is returned. In contrast, infection-based countermeasures always
return a ciphertext, but attempt to process the ciphertext in such a way that the
output becomes useless for an attacker in case of faults during the computation.
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While a description of detection-based countermeasures is already provided
in Section 5.2.2, we now give a detailed description of the infection countermeasure
that we also target in this work.

Infective Countermeasures. While detection-based countermeasures detect
a fault and then do not release a ciphertext, infective countermeasures always
provide a ciphertext, but amplify a possibly induced fault in such a way that a
faulty ciphertext becomes useless for an attacker. As an example for infection-
based countermeasures, we consider the infective countermeasure presented by
Tupsamudre et al. at CHES 2014 [TBM14] as an extension of an infective
countermeasure presented by Gierlichs et al. [GST12]. Patranabis et al. [PCM15]
give a formal proof for this countermeasure against DFA using a single fault
induction under the assumption that the sequence of executed instructions is
neither skipped, nor altered. In the proof, they evaluate the extent of mutual
information between the differential and the key for a given fault model. If this
mutual information is 0, the adversary gains no information about the key once the
infection affects the entire ciphertext. The only attacks on this countermeasure
so far are attacks that either skip or alter instructions [BG16]. The approach
is summarized in Algorithm 6.1. We will now give the basic intention behind

Algorithm 6.1 Infective countermeasure by Tupsamudre et al.
(taken from [TBM14])

Require: P , kj for j ∈ {1, . . . , n}, (β, k0), (n = 11) for AES-128
Ensure: C = EK(P ), or infected state

1: State R0 ← P , Redundant state R1 ← P , Dummy state R2 ← β
2: i← 1, q ← 1
3: rstr←$ {0, 1}t
4: while q ≤ t do
5: λ← rstr[q]
6: κ← (i ∧ λ)⊕ 2(¬λ)
7: ζ ← λ · di/2e
8: Rκ ← RoundFunction(Rκ, k

ζ)
9: γ ← λ(¬(i ∧ 1)) · BLFN(R0 ⊕R1)

10: δ ← (¬λ) · BLFN(R2 ⊕ β)
11: R0 ← (¬(γ ∨ δ) ·R0)⊕ ((γ ∨ δ) ·R2)
12: i← i+ λ
13: q ← q + 1

14: return R0

Algorithm 6.1. For a more detailed description we refer to the original work
of Tupsamudre et al. [TBM14]. Algorithm 6.1 works on three different states
R0, R1 and R2. State R0 is initialized with the plaintext P and is the state on
which the primary AES computation is performed. State R1 is also initialized
with P and serves as working state for the redundant AES computation. In the
fault-free case, both states R0 and R1 should contain the ciphertext at the end
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of the computation. The state R2 is initialized with a random 128-bit value β
and serves as working state for the dummy round calculations. The key k0 is
chosen such that RoundFunction(β, k0) = β.

Before the computation starts, a random string rstr of length t is initialized
randomly so that it contains 22 bits “1” and t − 22 bits “0”. The algorithm
iterates over rstr and executes for every “1” an AES round on R0, or a redundant
round on R1 (22 rounds for 2 times 10 rounds AES plus 2 times the whitening key
addition) in an alternating sequence, i.e., if a round on R0 has been calculated,
the next “1” executes a redundant round on R1 so that after this calculation,
the content of R0 and R1 should be the same in a fault-free case. For every “0”,
a dummy round is computed to update R2. The security level with respect to
the number of dummy rounds that are executed depends on the size of t and can
be chosen by the developer.

After every executed AES round, the algorithm checks if any of the values in
registers R0, R1, or R2 has been modified (R0 6= R1 or R2 6= β). If this is the
case, state R0 is, from this point on, always overwritten with the content of R2,
which is then returned as ciphertext. Since the value stored in R2 is random and
has never been mixed with, nor depends in any other way on the value of the
secret key, learning this value should be useless for the attacker.

In the following, we demonstrate that not only stuck-at faults can be exploited
in IFA and introduce statistical ineffective fault attacks. On a high level, these
attacks can be seen as an intersection of the principles exploited in the case
of IFA [Cla07] and SFA [Fuh+13]. In Section 6.2, we explain the necessary
conditions for our attack to work and demonstrate in Section 6.3 that they are
usually fulfilled when attacking real devices with algorithmic countermeasures.
In particular, the attacker does not need to assume any specific fault model and
can successfully recover the key even if a “noisy” fault induction setup is used
that may not always affect the targeted intermediate variable in the same way.

6.2 Statistical Ineffective Fault Attacks

In this section, we discuss the ideas behind the extension from ineffective fault
attacks [Cla07] (IFA) to statistical ineffective fault attacks (SIFA). First, we
review the effects of faults with the help of fault distribution tables to identify the
necessary conditions for SIFA to work in Section 6.2.1. Then we introduce the
working principle of SIFA in Section 6.2.2. Finally, we develop some theoretical
background of our attacks in Section 6.2.3.

6.2.1 The Effects of Faults

The effects caused by faults during the execution of cryptographic primitives
are manifold and depend on the method used to induce the fault (e.g., laser,
clock glitches), the architecture and manufacturing technology of the attacked
device, and various other parameters (e.g., targeting a register or arithmetic
instruction). However, all faults have in common that they change the value of a
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b-bit intermediate variable from a value x, which it would have for the correct
execution, to a value x′ in the presence of a fault. Observing the probability of
transitions from a certain value x → x′ gives us a fault distribution table (see
Section 6.2.3 for the exact definition).

With the help of such a fault distribution table, we are able to characterize
the effects of a wide range of faults that can happen in practice. For example,
this allows us to capture faults where the value of x′ is independent of the value x,
like stuck-at faults, random faults. Besides that we can also capture biased faults
that replace a value by another that is drawn from a non-uniform distribution
or more complex relations where x′ depends in some sense on x, for instance
by faulting the instruction that computes x. In Table 6.1, we show various
examples of fault distribution tables for different faults on a 2-bit intermediate
variable. Most fault countermeasures that work on an algorithmic level can only

Table 6.1: Fault distribution tables for several 2-bit fault models.

(a) Stuck-at-0

x′

00 01 10 11

x

00 1 0 0 0

01 1 0 0 0

10 1 0 0 0

11 1 0 0 0

(b) Random-And

x′

00 01 10 11

x

00 1 0 0 0

01 1
2

1
2 0 0

10 1
2 0 1

2 0

11 1
4

1
4

1
4

1
4

(c) Bit-flip

x′

00 01 10 11

x

00 0 0 0 1

01 0 0 1 0

10 0 1 0 0

11 1 0 0 0

(d) Random fault

x′

00 01 10 11

x

00 1
4

1
4

1
4

1
4

01 1
4

1
4

1
4

1
4

10 1
4

1
4

1
4

1
4

11 1
4

1
4

1
4

1
4

conceal cases where x 6= x′, because a fault induction that results in x = x′ is
indistinguishable from a normal working condition. As a consequence, an attacker
has access to ciphertexts where the attacked (faulted) intermediate variable follows
a distribution determined by the diagonal (red values) in Table 6.1. The attacks
presented in the following sections show that a non-uniform distribution in this
diagonal can be exploited to recover the key. Therefore, for an implementation
protected by such a fault countermeasure to be resistant against our attack, one
of the two following conditions has to be fulfilled: Either the probability that an
ineffective fault happens is negligible (as in Table 6.1c), or the distribution in
the diagonal of the fault distribution table is uniform (as in Table 6.1d).

Despite the fact that our analysis of arguably somewhat abstract fault models
indicate that the bit-flip and random fault models of Table 6.1c and Table 6.1d
are not susceptible to SIFA, our practical experiments in Section 6.3 indicate
that countermeasures cannot rely on the hope that only such “perfect” fault
models occur in practice. For instance, consider the case where a bit-flip occurs
probabilistically with the tendency to flip more often from 1 to 0 than from 0 to
1, as illustrated in Table 6.2. The resulting distribution has a biased diagonal.
In the following section, we will explain how such distributions can be exploited.
Since the fault distribution tables are typically not known by an attacker (unless
the attacker is able to profile the device), our attack works without any knowledge
of the fault distribution table. This is demonstrated by the practical attacks of
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Table 6.2: Bit-flip from 1 to 0 with 75 % and from 0 to 1 with 50 %.

x′

00 01 10 11

x

00 1
4

1
4

1
4

1
4

01 3
8

1
8

3
8

1
8

10 3
8

3
8

1
8

1
8

11 9
16

3
16

3
16

1
16

Section 6.3, which we perform without any knowledge of the underlying fault
model and fault distribution table.

6.2.2 Working Principle

We now consider a protected implementation of AES (cf. Appendix A.1) as an
example to show the working principle of SIFA. The attack can be split into
3 phases. The first phase is the actual fault attack and collection of suitable
ciphertexts. In the second phase, parts of the last round key are guessed and the
distribution of an intermediate state is evaluated. In the last phase of the attack,
the partial key-guesses are ranked according a metric (e.g., the squared euclidean
imbalance (SEI)). Once the correct candidate for each part of the last round key
round key is identified, the main key can be simply derived by reversing the AES
key-schedule.

Collecting Ciphertexts. Assume that we target one byte slightly before
the last application of MixColumns, as illustrated in Figure 6.1. We request
the ciphertexts for a number of plaintexts and fault each encryption. If the
implementation is protected with a detection-based countermeasure, we only
obtain those ciphertexts where the fault was ineffective; in case of an infective
countermeasure, we need to filter for ineffective faults ourselves by comparing
the obtained ciphertexts with a second, unfaulted encryption (or decryption).

Key Guessing. Following the fault model of Section 6.2.1, we obtain a set
of filtered ciphertexts whose intermediate variable in one byte before the last
MixColumns has a probability distribution given by the diagonal of the fault
distribution table. The key recovery phase then works similar as previously
described for SFA in Section 5.1.2. The main difference lies in the usage of correct
instead of faulty ciphertexts as also illustrated in Figure 6.1. A closer insight in
the number of ciphertexts required for key recovery is given in Section 6.2.3.

6.2.3 Statistical Model

In this section, we provide a more detailed statistical model for SIFA and justify
the use of the SEI. Our aim is to investigate the effect of various parameters, such
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Figure 6.1: Simple illustration of SIFA attacks on AES implementations using a
detection-based countermeasure. The attacker faults one of the redundant
computations (a) before MixColumns in the penultimate round (b).

as the fault distribution and the number of dummy rounds, on the necessary num-
ber of faulted ciphertexts to perform the attack with a certain success probability.
We compare two scenarios: The practical scenario where the fault distribution is
unknown to the attacker (CHI/SEI statistic), but also the theoretical scenario
where the attacker happens to know the distribution (LLR statistic). The em-
phasis of our analysis is on the hardest case: An unknown fault distribution,
close to uniform, with additional noise induced by countermeasures.

We consider the b-bit intermediate variable which contains the result of the
operation targeted by the fault, and consider its distribution during the attack
in more detail. From the attacker’s point of view, the value of this variable on a
particular input (in absence of faults) is a random variable X which depends on
the input and key. Additionally, the random variable X ′ denotes the value of
this variable on the same input, but where the attacker additionally attempted
to fault the operation. We also refer to X and X ′ as “before” and “after”
the fault, although this is not strictly accurate. Both X and X ′ take values
x ∈ X = {0, . . . , 2b − 1}. The action of the fault can be characterized by the
transition probabilities

px(x′) := P[X ′ = x′|X = x].

In practice, this fault distribution table FDT = (px(x′))x,x′ is usually not known,
or can only be roughly estimated. To perform the proposed attack, it is not
required to know the FDT. However, the success and efficiency of the attack
depends on some of the table’s properties. In the following, we will analyze the



6.2. Statistical Ineffective Fault Attacks 75

attack complexity and its dependency on the two relevant metrics: The fault’s
ineffectivity rate π=, and the capacity C(p) of the target distribution p.

Direct Sampling: Detection Countermeasure

We first consider attacks on cipher implementations equipped with detection-
based countermeasures. We can only take advantage of samples where X = X ′,
i.e., the fault is ineffective. We assume that X is uniformly distributed since
it models an intermediate variable in the penultimate round of a block cipher
implementation that is queried with varying inputs. Hence, P[X = x] = 2−b.
Then, the probabilities π= of an ineffective fault (ineffectivity rate) and π 6= of an
effective fault are

π= = P[X ′ = X] =
∑
x′∈X

px′(x′)

2b
, π6= = 1− π=.

We target the conditional distribution p=(x′) of X ′ in case of ineffective faults,
i.e., the diagonal of the fault distribution table (see Section 6.2.1):

p=(x′) := P[X ′ = x′|X ′ = X] =
px′(x′)

2b · π=
.

The attacker neither knows this distribution, nor can she directly observe X ′.
However, based on the observed cipher output and a key hypothesis for the
κ-bit last-round key material as in Section 6.2.2, she obtains a hypothesis X̂ ′ for
the values of X ′ and the set of filtered ciphertexts. She can then analyze the
distribution p̂ of X̂ ′ for a fixed key guess across multiple samples and distinguish
the correct key k0 from the wrong keys ki with 1 ≤ i < 2κ as follows:

• For an incorrect key guess, we assume a distribution very close to uniform,
which we denote by θi(x

′). Note that in practice, this is not necessarily
the case, in particular for partially correct key guesses. For example, for a
byte-stuck-at fault and a key guess that is only incorrect in one byte, the
capacity is expected to drop from 255 to about 1, instead of 0. Nevertheless,
we do later show that this assumption is valid for the practical evaluations
that we perform in Section 6.3.

• For the correct key guess, we sample the unknown distribution p(x′) =
p=(x′). If p=(x′) differs significantly from uniform, we can distinguish
these two cases. More concretely, we can identify the samples from p=(x′)
produced by the correct key k0 among the collection of samples from the
nearly uniform distributions θi(x

′) ≈ θ(x′) = 2−b produced by the wrong
keys ki.

To identify the correct key k0 and its distribution p = p=, we associate a
score statistic S(p̂) with each key candidate and the corresponding distribution p̂,
and rank the key candidates according to this statistic. This approach is closely
related to statistical cryptanalysis, such as differential and linear cryptanalysis,
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and has been theoretically analyzed in those contexts. Under the assumption
that S(p̂) is independently normally distributed for samples from either p or θ,
as done by Selçuk in [Sel08],

S(p̂) ∼

{
N(µR, σ

2
R) if p̂ was produced by p ,

N(µW, σ
2
W) if p̂ was produced by θ ,

(6.1)

Selçuk analyzed the success probability of ranking the correct key k0 among
the top 2κ−a of 2κ key candidates based on N samples, where they call a the
advantage. Then, the difference ∆a between the score of k0 and the score of the
wrong key with rank 2κ−a (quantile α = 1− 2−a) is normally distributed with
parameters

∆a ∼ N(µ∆, σ
2
∆),

µ∆ = µR − µW − σW Φ−1
0,1(α) ,

σ2
∆ ≈ σ2

R for sufficiently large 2κ [BGN12a],

and thus the success probability depending on N and a (or α) can be estimated
as in [Sel08]

P[∆a > 0] ≈ Φ0,1

(
µR − µW − σW Φ−1

0,1(α)

σR

)
. (6.2)

If one is interested in the probability that the right key has the highest rank we
can set a = κ:

P[∆κ > 0] ≈ Φ0,1

(
µR − µW − σWΦ−1

0,1(1− 2−κ)

σR

)
.

To obtain useful complexity estimates from Equation 6.2, we need a normally
distributed statistic S(p̂) parameterized by µ and σ2 according to Equation 6.1.
We first consider the (unusual) case 1 that we know the real distribution p = p=.
Then, the Neyman-Pearson lemma [NP33; CT06] states that the optimal statistic
S is the log-likelihood ratio

S(p̂) = LLR(p̂) = LLR(p̂, p, θ) := N
∑
x∈X

p̂(x) log2

p(x)

θ(x)
.

For large N , LLR(p̂) tends towards a normal distribution as required in Equa-
tion 6.1 [CT06; BJV04]. The success probability in Equation 6.2 then depends
on the Kullback-Leibler divergence D(p‖θ) and an auxiliary metric D∆(p‖θ) that
is defined in the extended version of [BGN12a] in [BGN12b] (Appendix A.2):

D(p‖θ) :=
∑
x∈X
p(x) 6=0

p(x) log2

p(x)

θ(x)
, D∆(p‖θ) :=

∑
x∈X
p(x)6=0

p(x)

[
log2

p(x)

θ(x)

]2

−D(p‖θ)2 .

1Note that in this case, we could also target the last round with lower a and N , but more
repetitions to obtain the full key.



6.2. Statistical Ineffective Fault Attacks 77

If p is very close to uniform θ, these can be approximated using the capacity
C(p, θ) [BCQ04]:

C(p, θ) :=
∑
x∈X

(p(x)− θ(x))2

θ(x)
≈ 2D(p‖θ) ≈ D∆(p‖θ) (only if p is close to θ.)

The resulting estimate for the necessary number of samples NLLR to achieve a
success probability P = P[∆a > 0] can be derived as [BJV04; BGN12a]:

NLLR ≈

[
Φ−1

0,1(P )
√
D∆(p‖θ) + Φ−1

0,1(α)
√
D∆(θ‖p)

D(p‖θ) +D(θ‖p)

]2

≈
2[Φ−1

0,1(P ) + Φ−1
0,1(α)]2

C(p, θ)
.

When applied to the AES fault analysis scenario, knowing p = p= means both
knowing the exact fault distribution of the ineffective faults and guessing 8 bits
of the equivalent key to K9 in the penultimate round, with a correspondingly
increased advantage a. In the context of differential cryptanalysis, it has been
demonstrated [BGN12a] that even small errors in the estimate of p can signifi-
cantly increase the necessary number of samples. Since such exact models of p=

are usually not available for practical fault attacks, we can consider less optimal,
but more robust statistics.

The classical test statistic for an unknown distribution p is Pearson’s χ2:

CHI(p̂) := χ2(p̂, θ) = N
∑
x∈X

(p̂(x)− θ(x))2

θ(x)
,

or, for uniform θ, the closely related squared euclidean imbalance (SEI):

SEI(p̂) :=
∑
x∈X

(p̂(x)− θ(x))2 = (N · 2b)−1 · CHI(p̂) .

The statistic CHI(p̂) is distributed according to the (noncentral) chi-squared
distribution with k = |X| − 1 = 2b − 1 degrees of freedom and noncentrality
parameter λR = N C(p, θ) or λW = 0. For large k and N , this tends towards a
normal distribution with parameters [HCN09; Dro+89]

CHI(p̂) ∼

{
N(µR = k +NC(p, θ), σ2

R = 2 [k + 2NC(p, θ)]) ,

N(µW = k, σ2
W = 2k) .

Based on these parameters, we can express the equation in Equation 6.2 as a
degree-two polynomial as in [BGN12b] (Appendix A.2) and estimate the necessary
number of samples as

NCHI ≈
s+
√
s2 − t

C(p, θ)

(
s =
√

2kΦ−1
0,1(α) + 2Φ−2

0,1(P ), t = 2k(Φ−2
0,1(α)− Φ−2

0,1(P ))
)

=

√
2kΦ−1

0,1(α)

C(p, θ)
(for success probability P = 0.5.)
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Summarizing, both statistics lead to an estimated number of samples that is
proportional to 1/C(p, θ), where the constant depends on the desired success
probability P and advantage a (or quantile α = 1 − 2−a). However, these
estimates are only useful if the resulting N is reasonably large, that is, if p is not
extremely different from θ.

Noisy Sampling: Infective Countermeasure

So far, we assumed that for the correct key guess, the attacker makes the correct
hypothesis X̂ ′ = X ′, and thus directly samples the distribution p=(x′). We will
now show that the same approach also generalizes naturally to cases where the
attacker only obtains noisy measurements.

As an example, consider the infective countermeasure discussed in Section 6.1
that performs R = r + 11 + 11 rounds of AES where r denotes the number
of dummy rounds. The remaining (non-dummy) rounds correspond to two
redundant encryptions of the plaintext P and always occur in alternating order.

To identify computations with ineffective faults, the attacker has to compare
the faulted ciphertexts C ′ with previously obtained correct ciphertexts C for
the same plaintexts P , and keeps only the samples where C = C ′. Assuming
the same fault model as before, she will keep a fraction of about π= samples.
However, she does not know whether the ineffective fault really occurred in a
penultimate non-dummy round, or elsewhere: in a dummy round or the wrong
round. To calculate the impact of this countermeasure on key recovery, we can
make the following considerations.

Counting from the end, we denote with t the round that is targeted by the
attacker, and with s the index of a non-dummy round. Then, for a certain value
of t, a fault induction hits a penultimate non-dummy round if the index s of that
round has the value 2 or 3. If we are now interested in cases where the attacker
can target either of the two penultimate non-dummy rounds, the probability of
these two cases can be summed up (σ+). If we consider cases where the attacker
has to choose one of the two in advance, the maximum of the two individual
probabilities is relevant (σmax). Figure 6.2 illustrates the relation between σ and
different choices for r and t and how it is calcualted. For completeness, we also
plot the values for the corresponding observed probability (σ = σ∗) from our
practical evaluation in Section 6.3.2. We consider σ+ to be most representative
for a realistic fault attack setting.

σ =

{
σ+ = σ2 + σ3,

σmax = max{σ2, σ3},
σs =

(
t
s

)
·
(
R−t−1
22−s−1

)(
R
22

) .

Depending on whether round t was indeed relevant, the hypothesis X̂ ′ for
the correct key now samples one of two distributions: If t was relevant, X̂ ′ = X ′

and we sample p=(x′); else, we sample a distribution close to uniform. Thus, we
sample a noisy variable X ′′ with distribution p≈(x′′), where

p≈(x′′) = σ p=(x′′) + (1− σ) 2−b = σ (p=(x′′)− 2−b) + 2−b.
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Figure 6.2: Probability σ of successful sampling for r ∈ {11, 22, 66} dummy rounds.

The capacity of this distribution is

C(p≈) =
∑
x∈X

(p≈(x)− 2−b)2

2−b
=
∑
x∈X

(
σ (p=(x′′)− 2−b)

)2
2−b

= σ2 C(p=).

Thus, the expected data complexity for noisy sampling is σ−2 times higher
compared to direct sampling.

In summary, the expected number of faults the attacker has to induce to
collect enough samples is inverse proportional to π= · σ2 · C(p=), where the
constant depends on the desired success probability P and advantage a.

6.2.4 Examples and Simulations

To illustrate the statistical model in more detail, we consider a simulation of the
attack with a random-and fault, i.e., each set bit of the target byte is flipped from
1 to 0 with probability 1

2 . The ineffectivity rate of this fault is π= = (3/4)8 ≈ 10 %.
We attack an AES implementation protected with the infective countermeasure
(Section 6.1) with r = 22 dummy rounds and target round R− t = 44− 4 = 40,
obtaining a signal of σ = 1111

3526 ≈ 0.315 among the ineffectively faulted samples.
The expected target distribution p(x) for the correct key is illustrated together
with the uniform distribution θ in Figure 6.3 and depends on the Hamming
weight hw(x):

p(x) = σ · 28−hw(x)/38 + (1− σ) · 2−8.

To compare the practically necessary number of samples N (with or without
knowledge of p(x)) with the predictions of Section 6.2.3, we evaluate the statistics
LLR(p̂) and CHI(p̂). For runtime reasons, we limit our analysis to comparing
the correct last-round key against 224 wrong key candidates (out of 232; we set
one byte to the correct value).

For the LLR(p̂) statistic, we need to know the exact target distribution after
addition of the penultimate round key, so we need to guess a byte K ′ of the
penultimate round key in addition to the 24-bit key guess K. For simplicity, we
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Figure 6.3: Distributions p and θ for random-and fault and infective countermeasure.

evaluate each candidate K based on the statistic

S(p̂) = max
K′

LLR(p̂, pK′ , θ) = max
K′

N
∑
x∈X

p̂(x) · log2

p(x⊕K ′)
θ(x)

.

To reflect this in the model and evaluate the probability that the correct 24-bit
K is ranked highest, we set the advantage to a = κ+ 8 = 32, so α = 1− 2−32.
Based on the model of Section 6.2.3, we expect the statistics LLRR of the right
key, LLRW of any wrong key, and LLR∗W of the best wrong key to be normally
distributed with the following parameters:

µR = ND(p‖θ) ≈ 0.075N σ2
R = ND∆(p‖θ) ≈ 0.252N

µW = −ND(θ‖p) ≈ −0.064N σ2
W = ND∆(θ‖p) ≈ 0.157N

µ∗W = µW + Φ−1
0,1(α)σW ≈ −0.064N + 2.469

√
N σ2∗

W � σ2
W .

For the CHI statistic, we use a = κ = 24 and expect the statistics CHIR, CHIW,
and CHI∗W to be normally distributed with the following parameters:

µR = k +N C(p, θ) ≈ 255 + 0.131N σ2
R = 2k + 4N C(p, θ) ≈ 510 + 0.525N

µW = k = 255 σ2
W = 2k = 510

µ∗W = µW + Φ−1
0,1(α)σW ≈ 375 σ2∗

W � σ2
W .

Figure 6.4 compares the resulting model (dashed: µR, µ
∗
W) with the statis-

tics obtained in a key recovery attack using simulated fault inductions (solid:
S(p̂R), S(p̂∗W)). For for both statistics, the correct key candidate is marked by
a thick line, the best wrong key candidate is marked by a thin line while the
remaining wrong candidates are contained in the (colored) area below. The pre-
dicted necessary number of samples N for success probability P = 0.8 and with
advantage a = 24 (for CHI) or a = 32 (for LLR) is marked as NCHI and NLLR,
respectively. This estimate quite accurately matches the practically necessary N .
It is worth noting that for both statistics, the best wrong key candidate scores
slightly better than predicted with µW. This can be partly explained with the
not-entirely-uniform distribution of the target variable for partially correct key
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Figure 6.4: Simulation results for infection countermeasure and random-and fault.

guesses, as discussed in Section 6.2.3. In case of CHI(p̂), both the right and
wrong keys scored slightly higher than expected.

We repeated simulations for other fault models (bit-stuck-at-0, byte-stuck-
at-0) and for both countermeasures (detection, infective). The model matches
the practical results similarly well when the capacity C(p, θ) is not too large and
thus N is not too small to justify the normal approximation. In particular, for
the byte-stuck-at-0 fault, C(p, θ) � 1, and the model predicts fewer than the
practically necessary N ≈ 4 (σ = 1, detection) or N ≈ 15 (σ = 0.315, infective)
samples.

In summary, having insight in the concrete effect of a fault allows to model
the scores of the correct and best wrong key and accurately predict the necessary
number of samples for a successful attack. In such a case, the LLR outperforms
the CHI (or SEI) statistic in terms of required samples. However, for LLR, even
small errors in the estimate of p can significantly increase the necessary number
of samples [BGN12a]. Hence, in practice, the CHI (or SEI) statistic is preferable,
since the attacker can reliably and efficiently recover the key in the presence of
countermeasures without any knowledge of p as demonstrated in Section 6.3.

6.3 Practical Evaluation

For the practical evaluation of SIFA we have performed multiple experiments
implemented on various microcontrollers listed in Table 6.3. First, we show the
practical applicability of SIFA against a time redundant 8-bit software AES, a
time redundant hardware AES co-processor, and a time redundant 32-bit bitsliced
AES. We then show practical attacks against the infective countermeasure by
Tupsamudre et al. [TBM14] for several security parameterizations.
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Table 6.3: Target microcontrollers of our attack evaluation.

Name ALU Size Core CPU Freq.

ATXmega 256A3 8-bit Atmel AVR 12 MHz
ATXmega 128D4 8-bit Atmel AVR 7 MHz
STM32 F3 32-bit ARM Cortex-M4 7 MHz

Fault Setup. In order to induce the faults we have used clock glitches. To be
more precise, we insert an additional fast edge on the original clock signal that
violates timing requirements of electronic signals on the device. This can then
lead to undefined behaviour such as erroneous computation results or entirely
skipped instructions. By additionally varying width and offset of the induced
edge, it is possible fine-tune the concrete effect of fault induction on the currently
executed instruction as well as its reproducibility. We have used an FPGA for
generating both the original clock signal and the clock glitch for the device
under test. For sake of simplicity, we determined our attack parameters with
the help of an unprotected implementation in the case of the detection-based
countermeasure. In case that an unprotected implementation is not accessible to
an attacker, determining the fault parameters is much more time consuming, but
still feasible. We want to point out that the demonstrated attacks do not require
a profiling of the actual distribution of the induced fault. In fact, we performed
the key recovery attacks without any knowledge about the distribution of the
targeted intermediate variable.

All experiments are performed in a fully automated attack setup. By using
this setup, we are able to perform about 20 faulted encryptions per second, or
72 000 per hour. The time required to collect enough correct ciphertexts for key
recovery is somewhere between 1 minute and 2 hours.

Possible Effects of Clock Glitches. We first give some intuition explaining
the possible scenarios that can occur when using clock glitches for fault induction
on various platforms. Later, when discussing the individual attack results, we will
refer to these scenarios to help explain our results. The following three scenarios
can arise:

1. Missed Fault. Occurs if the parameterization of a clock glitch is incorrect
and the targeted device is not affected in any way. This situation can for
example occur if a glitch is inserted onto the clock signal close towards the
end of an ordinary clock cycle when all signals have already stabilized.

2. Successful and Effective Fault. Occurs if the induced clock glitch influences
the target instruction/register and the result of the current computation
(e.g. encryption) is affected.
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3. Successful but Ineffective Fault. Occurs if the induced clock glitch influences
the target instruction/register but no effect on the outcome of the current
computation (e.g. encryption) is observed.

Generally speaking, traditional fault attacks exploit Successful and Effective
Faults, while IFA, and SIFA exploit Successful but Ineffective Faults. Depending
on the attacked implementation and the quality of laboratory equipment, the
occurrence of Missed Faults varies. For an attacker, it is usually not possible to
distinguish between a Missed Faults and a Successful but Ineffective Fault, since
both have no effect on ciphertexts. In fact even if we know the key in our attacks,
we cannot reliably distinguish between those two cases. While distinguishing
between both cases is not needed in the attack the amount of Missed Faults does
impact the success probability.

Properties of (Ineffective) Biased Faults. Besides properties that are
only mostly related to the fault induction setup alone we define two additional
properties that are also related to the concrete type of computations that are
targeted by the fault induction:

1. Bias. The resulting bias of a certain intermediate variable/byte defines its
distance from a uniform random distribution, when observed over multiple
encryptions. In the context of SIFA, we measure this distance via the
squared euclidean imbalance (SEI). The bias that we observe and exploit
in SIFA stems from the combination of Missed Faults and Successful but
Ineffective Faults.

2. Fault Ineffectivity Rate. This rate determines how often there is no effect
on the computational outcome after fault induction:

#(Successful but Ineffective Faults) + #(Missed Faults)

#(Successful and Effective Faults)

The performance of a fault attack is often measured in the number of required
faulted encryptions. An ideal fault for SIFA would cause a strong bias, have a
high Fault Ineffectivity Rate, and would never miss. Such ideal faults are difficult
to achieve in practice, since the requirements are somewhat contradictory. When
considering the common fault models the stuck-at fault on bit-level is a good
candidate for SIFA, since it has a very high Fault Ineffectivity Rate of 50% while
still causing a decent bias. Higher rates are possible if, e.g., Missed Faults occur,
however, the observed bias would then be reduced.

In our practical evaluation of SIFA, we deal with faults that are not necessarily
optimal for SIFA. On some platforms we observe strong biases but in combination
with very low Fault Ineffectivity Rates. On other platforms we observe high
Fault Ineffectivity Rates but weak biases. Nevertheless, we are able to perform
practical attacks on various platforms with different countermeasures in place.
This demonstrates the versatility of SIFA and biased faults in general. At the
end of each practical experiment we shortly discuss our findings regarding fault
scenarios in combination with the fault properties described above.
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6.3.1 Attacks on Detection-based Countermeasures

We first target a detection-based countermeasure that uses simple time redun-
dancy with subsequent comparison (Algorithm 5.1). Here, the encryption is
executed twice and only if the results of both encryptions are identical, the
ciphertext is returned. Note that our attack is just as effective in case more than
two redundant executions are performed. We evaluated our attack both for soft-
ware AES implementations and AES co-processor implementations. The attacks
against software AES were evaluated on the 8-bit ATXmega 256A3 computing
SubBytes via table lookups, and a 32-bit STM32 F3 using a bitsliced implemen-
taion. The attack against the hardware co-processor AES was performed on the
ATXmega 256A3.

8-bit Software AES. We used the AES implementation from the AVR-
CryptoLib [Avr] as a basis for our implementation featuring a detection-based
countermeasure (cf. Section 5.2.2) and performed experiments on both an
ATXmega 256A3 and an ATXmega 128D4. Our attacks target the output of
the S-box calculation in round 9, and we only induce a fault in one of the two
redundant AES encryptions as illustrated in Figure 6.1.

The results presented in Figure 6.5 show the number of correct ciphertexts
(≈ 220 and 5) needed until the correct 4-byte key candidate has the highest
SEI and thus can be reliably distinguished. In both cases, roughly 1 000 faulted
encryptions were necessary to collect the required amount of unaffected and
correct ciphertexts. From these results we can see that our fault inductions had
quite different effects on both types of microprocessors. On the ATXmega 128D4
platform we are able to induce reliable faults that affect single instructions/bytes.
Here, the Fault Ineffectivity Rate of 1/256 = 0.39% is very low but the induced
bias is strong. We hence suspect that the fault induction set an intermediate
(8-bit) variable to a certain value. The observed distribution in the case of
an ineffective fault then only contains samples of one of all possible values.
In contrast, the Fault Ineffectivity Rate of 34% is comparably high on the
ATXmega 256A3 platform, possibly due to the occurrence of Missed Faults.

32-bit Bitsliced Software AES on STM32 F3. In order to evaluate our
attack for bitsliced AES implementations, we have used the constant-time
bitsliced implementation by Schwabe and Stoffelen [SS16]. The attack setup
itself is similar to the one in the previous section.

About 22 000 correct ciphertexts were required to reliably recover 4 bytes of
the AES key, as shown in Figure 6.6. In total we have performed 130 000 faulted
AES encryptions and received about 26 000 correct ciphertexts. Hence, the Fault
Ineffectivity Rate was 20 % in this setting. Again, we do expect a mixture of
weak biases and Missed Faults. Please note that this result is meant as a proof
of concept rather than a concrete performance estimation of SIFA against 32-bit
platforms.
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Figure 6.5: Attacks on 8-bit software AES, detection countermeasure. SEI of the
correct key (SEIR) vs. best SEI for a wrong key (SEI∗W) for N correct
encryptions.
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Figure 6.6: Attacks on 32-bit bitsliced SW AES, STM32 F3, detection countermeasure.
SEI of the correct key (SEIR) vs. best SEI for a wrong key (SEI∗W) for
N correct encryptions. 22 000 correct ciphertexts are required, stemming
from about 130 000 faulted encryptions.

Hardware Co-Processor AES on ATXmega 256A3. In our attack against
the integrated AES co-processor on the ATXmega 256A3, approximately 550
correct ciphertexts were required for recovering 4 bytes of the AES key as shown
in Figure 6.7. In total about 800 faulted encryptions were required, the Fault
Ineffectivity Rate is hence about 69 %. As explained before, such a high rate is
only possible if Missed Faults occur. We strongly expect that the former is the
case, maybe in combination with a weak bias.

6.3.2 Attacks on Infective Countermeasures

We evaluated our attack on the infective countermeasure by Tupsamudre et
al. [TBM14] from CHES 2014 (Algorithm 6.1). Since the hardware co-processor of
the ATXmega 256A3 only computes one complete call of AES, we limit this attack
evaluation to purely software-based implementations on the ATXmega 128D4.

We extended the AES implementation from the AVRCryptoLib [Avr] accord-
ing to Algorithm 6.1. The implementation of the AES round functions itself was
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Figure 6.7: Attacks on HW AES co-processor, ATXmega 256A3, detection counter-
measure. SEI of the correct key (SEIR) vs. best SEI of a wrong key
(SEI∗W) for N correct encryptions. 550 correct ciphertexts were required,
stemming from about 800 faulted encryptions.

not modified. Since the authors in [TBM14] did not give any recommendations
for t, we have evaluated our attack for t ∈ [11, 22, 66], leading to AES encryptions
that require 33, 44, and 88 AES round function calls, respectively.

We started with a simulation of multiple encryption runs in order to deter-
mine when a penultimate, non-dummy AES round is performed with highest
probability. Clearly, the best time for the attack depends on t. According to the
simulation results in Table 6.4 we hit a penultimate, non-dummy round with
highest probability when targeting the 31st, 41st, and 83rd round, respectively.
Once we know the best round for the attack, we can use a similar fault parame-
terization as in the other experiments with the ATXmega 128D4. In contrast to
the detection-based scenario, we cannot detect ineffective faults by observing just
one encryption when infection is used. Hence, we always perform one encryption
twice, one with fault induction, and one without.

Table 6.4: Occurrence of dummy round hits for infective AES.

Dummy Total AES Target Correct Round Hit
Rounds t Rounds Round Probability

11 33 31 44 %
22 44 41 25 %
66 88 83 11 %

As mentioned earlier the efficiency of SIFA is, among others, determined
by the bias of the induced fault, the fault’s Ineffectivity Rate, and thus might
vary between experiments. In order to allow for an easier comparison between
the results for various t we only show practical results where the Ineffectivity
Rate and the strength of the bias are similar. Both properties can be roughly
estimated by an attacker after successful key recovery.

Our attack evaluation was performed for a variable number of dummy rounds
with t ∈ [11, 22, 66], the results are shown in Figure 6.8. In our practical evaluation
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on the ATXmega 128D4 platform, and depending on t, 6 500, 9 000, 46 000 faulted
encryptions were necessary to gather the 25, 34, 180 correct ciphertexts that
allowed us to recover 4 key bytes. Here we conclude that the bias of the induced
fault was strong, the Ineffectivity Rate was low, and the number of Missed Faults
was also low.

Compared to the analysis in Section 6.2.3 and Table 6.4, the observed increase
in the necessary number of ciphertexts roughly matches the predictions, in
particular from t = 22 to t = 66 (increase roughly ×5.9, predicted ×5.2). The
observed increase compared to t = 11 (roughly ×1.4 to t = 22 and ×8.0 to
t = 66) is less than predicted using the the measured probabilities from Table 6.4
(predicted ×3.1 and ×16.0, respectively). This may indicate that the probabilities
are closer to the theoretical estimates σ+ from Figure 6.2 (predicted ×1.4 and
×11.0, respectively) and/or a relatively high number of ciphertexts required in
the specific experiment for t = 11. The latter is very likely because the estimates
and normal approximations of Section 6.2.3 assume a relatively low capacity and
are not accurate for high capacities and small N , as we have for t = 11.

The small available number of samples is not sufficient to derive a detailed fault
model (for the sake of comparing our results in more detail with the theoretical
model; of course, we do not require the model to perform the attack). However,
based on the available data for t = 22 and t = 66, we can make an educated
guess at the effects of our fault setup. The fault ineffectivity rate is very close
to 1/256, as we would expect from a fault that affects a whole byte and a very
small number of missed faults, as discussed above. The observed distribution
among the ineffective faults during the key recovery phase also suggests a noisy
stuck-at distribution, with a signal σ less strong than expected for the infection
countermeasure. This may indicate that if the stuck-at fault hits the correct
round, it hits the correct byte (correct fault effect) in a fraction around half or
three quarters of the cases. This model is also a good fit to explain the necessary
number of correct ciphertexts for t = 22 and t = 66 (for t = 11, the number of
samples is too low to make any useful statements): For example, for t = 66 based
on N = 237 collected samples, assuming σ ≈ 0.065 (see Figure 6.2, and close to
0.5 · 0.11 from Table 6.4 as assumed above), we would expect about 16.5 stuck-at
hits (observed: 18). Using advantage a = 32 and target success probability
p = 0.8, the model would predict that we need roughly 160 ciphertexts, which
is only slightly less than we actually needed (Figure 6.8c). For the other cases,
similar models also slightly underestimate the necessary number of ciphertexts.

6.4 Discussion of other Implementation Coun-
termeasures

We have demonstrated the effectiveness of SIFA on two different countermeasures
using various platforms in the previous section. Nevertheless, more countermea-
sures exist and we discuss the impact of some of them on SIFA in this section.
Overall, SIFA seems to be a powerful attack vector and so far, the main point
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(a) ATXmega 128D4, t=11. 25 correct ciphertexts were
required, stemming from about 6 500 faulted encryp-
tions.
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(b) ATXmega 128D4, t=22. 34 correct ciphertexts were
required, stemming from about 9 000 faulted encryp-
tions.
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(c) ATXmega 128D4, t=66. 180 correct ciphertexts were
required, stemming from about 46 000 faulted en-
cryptions.

Figure 6.8: Attacks on infective countermeasure. SEI of the correct key (SEIR) vs.
best SEI of a wrong key (SEI∗W) for N correct encryptions.

we can say regarding countermeasures is that more noise, e.g., by using dummy
rounds increases the attack complexity.

6.4.1 Infection by Patranabis et al.

The infection countermeasure by Patranabis et al. [PCM15] can be seen as
an extended version of the one described in Section 6.1. Hence, we limit our



6.4. Discussion of other Implementation Countermeasures 89

description solely to the actual differences between both designs. The extended
countermeasure aims at tackling a shortcoming of the previous design that allowed
successful attacks if an attacker is able to alter the control flow or force precise
instruction skips. To mitigate this attack vector two adaptations were proposed.

First, an additional randomized string cstr is introduced that raises the
uncertainty in the execution order of cipher state R0 and redundant state R1 in
each round. cstr is of length 2t and is made up of t 2- bit tuples [xi, yi], each of
which has either the value [0, 1] or [1, 0]. While the execution order of R0 and
R1 within one round was fixed in the previous design, cstr can now be used to
additionally shuffle their execution.

Second, temporary masking is introduced that hides R0 and R1 at the end of
an odd round and reveals them at the beginning of the corresponding even round.
This has the effect that neither R0 nor R1 expose the output of the previous
round after an odd round.

In SIFA, every time we receive a correct ciphertext stemming from an inef-
fective fault induction on an AES with correct key, we can reduce the number
of key candidates. Since both R0 and R1 use the correct key, their execution
order within one round is irrelevant for SIFA. The additional temporary masking
of states does not affect SIFA either, since all round function calls still work
with the original states. Hence, we expect SIFA to perform against the extended
version of infection as well as against the version by Tupsamudre et al. [TBM14].

6.4.2 Fault Space Transformation

Fault Space Transformation (FST), is a novel fault countermeasure proposed by
Patranabis et al. [Pat+17]. This countermeasure works with two redundant states
R0 and R1, similar as a detection-based countermeasure that uses redundancy
with subsequent comparison. So the encryption is performed on R0 and R1, but
under a special linear encoding R1 = W (R0) such that it is difficult to induce
similar faults in both states.

While there are many possible choices for the linear encoding W , the authors
propose the usage of the AES-MixColumns function. This choice of W has the
beneficial side effect that a one-byte fault in one state is mapped to a 4-byte
fault in the other state and vice versa. This linear dependency between R0 and
R1 increases the difficulty of inducing two equivalent faults or the exploitation
of two biased faults up to a point where they can be considered infeasible in
practice. The threat of both DFA as well as DFIA is hence prevented. For a
more detailed description of FST we refer to the original paper [Pat+17].

However, SIFA solely relies on observing whether a fault induction in one AES
state (either R0 and R1) is ineffective. Since the state R0 is calculated without
linear encoding, an attacker, who is able to only fault the branch calculating
R0 can expect the same attack complexities as on an ordinary detection-based
countermeasures (Section 6.3.1). Faulting the encoded state would work too, the
observed bias would be different but still be as strong as in the non-encoded
state. Like mentioned before, in SIFA the existence of a bias is sufficient for key
recovery. The exact distribution of the bias does not need to be known by the
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attacker. Hence, SIFA performs against FST as well as shown in the attacks
against AES with detection-based countermeasure.

6.4.3 Majority Voting

SIFA relies on detecting whether an induced fault is ineffective. A complete
mitigation of this attack vector would require a compensation of any fault
induction such that every observed encryption is correct. One technique that
attempts to do this is Majority Voting (MV) to select which ciphertext is returned.
In MV the same computation is performed n times, where n is odd and ≥ 3.
The final output is then defined as the majority over all computed outputs. It
depends on the implementations what happens if all ciphertexts differ. Here, we
assume that in this case no ciphertext is returned. Such a scheme would prevent
SIFA, using single faults per encryption, since one faulty ciphertext is always
“overruled“ by at least two correct ciphertexts.

In the case of SIFA against MV with n = 3 one can simply perform one
ordinary targeted 9th round biased fault induction in one computation and any
random fault induction in one of the other computations. That way a correct
ciphertext has the majority if the biased fault induction is ineffective. For this
implementation of the countermeasure, we expect that an attack works with a
similar complexity as for detection-based countermeasures, but requiring two
faults per execution.

Note that different implementations of a majority voting are possible. For
instance, a majority voting on bit level is possible. If n = 3, and at least
two computations are erroneous, an attacker will get an erroneous ciphertext
returned. Still, SIFA is possible as described before, however, an attacker now
needs additional computations in order to identify erroneous ciphertexts.

6.4.4 Masking

Masking (cf. Section 2.2.1) is a widely-deployed countermeasure against side-
channel attacks, where the secret intermediate variables are split into d-shares.
On the first glance, masking prevents a direct application of SIFA. One way
to apply SIFA on masking is to use multiple faults on all shares of a single
intermediate variable. While using only single faults for their proposed attack,
using faults on multiple locations is a strategy already proposed by Clavier [Cla07]
to apply IFA on masked implementations. As a simple example consider an
attacker, who is able to induce a fault that sets one variable more likely to 0. If
this fault is applied on all shares of the same variable, also the native variable
will likely be biased and hence, SIFA will work.

A straightforward application scenario for SIFA against masking are bitsliced
implementations that work on all shares concurrently [JS17]. Here, one biased
fault is likely to cause a joint non-uniform distribution over all shares that can
be exploited by an attacker in the exact same way as described in this chapter.
However, SIFA against masking is not restricted to these implementations, or
multiple faults. In Chapter 8, we demonstrate that SIFA is applicable on masked
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implementations of cryptographic primitives with fault countermeasures using
just a single fault induction.

6.5 Conclusion

In this chapter, we have provided an extensive insight on ineffective faults, where
faults are being induced, but not showing an effect. The introduced statistical
ineffective fault attacks (SIFA) can be seen as an intersection of the principles
exploited by ineffective fault attacks (IFA) [Cla07] and by statistical fault attacks
(SFA) [Fuh+13]. While previous work on IFA relies on strong models like stuck-at
faults, we were able to relax these conditions up to a point were we only require
that intermediate variables follow an unknown but non-uniform distribution
in cases where fault inductions have been ineffective. Hence, no special fault
profiling of a targeted device is necessary.

SIFA inherits the ability from IFA that it only exploits the output of valid
computations, which makes the attack independent of the degree of redundancy
used in a countermeasure. As a consequence, it is not harder to attack a
detection-based countermeasure performing 16 redundant operations compared
to a countermeasure just performing 2. On the other hand, like SFA, SIFA works
with minimal assumptions on the effect of the faults. Thus, similar as it has been
shown for SFA (e.g., in [Dob+16]), we are able to demonstrate the feasibility of
SIFA on various platforms in practice. However, in contrast to SFA, the practical
attacks with SIFA are possible even in the presence of countermeasures against
fault attacks.

We have demonstrated the improvements of our work over IFA, amongst
others by showing the applicability of SIFA on detection-based countermeasures
utilizing 32-bit-bitsliced software AES implementations, or hardware co-processor
AES implementations. In both cases the induction of precise stuck-at faults in
certain bytes, as required by IFA, is considerably harder and was not possible in
our fault setup.

Ultimately, we show that SIFA has new applications where neither SFA nor
IFA are applicable by demonstrating attacks against an infective countermeasure
presented at CHES 2014 [TBM14].
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7
Fault Attacks on Nonce-based

Authenticated Encryption: Application
to Keyak and Ketje

In Chapter 6 we have shown the capabilities of statistical ineffective fault attacks
(SIFA) in case of typical block cipher implementations that feature fault counter-
measures such as double-execution or infection. In this chapter, we extend the
scope of our analysis to authenticated encryption schemes which are becomming
increasingly popular, a trend that is also reflected by NIST’s currently ongoing
standardization process of lightweight authenticated encryption schemes [Nat18;
McK+17]. In particular, we show that SIFA can be applied to the initialization
performed in nonce-based authenticated encryption schemes. By targeting the
initialization performed during unwrap calls, authenticated encryption schemes
provide the attacker with an oracle whether a fault was ineffective or not. This
information is all the attacker needs to mount statistical ineffective fault attacks.

As observed by many publications [SKC14; SC15; SC16], the uniqueness of
the nonce in authenticated encryption schemes prohibits the straightforward
application of analysis techniques like differential fault attacks (DFA) [BS97] to
the wrapping phase. In the case of unwrapping, the built-in validation of the
authenticity of the processed data often provides an implicit detection of induced
faults. Therefore, several attacks published so far assume scenarios, where the
uniqueness of the nonce is not ensured [SKC14] or unverified plaintext is re-
leased [SC15]. Other works consider attack scenarios without misuse assumptions
but require a precise faults inductions at multiple locations during one execution
of the authenticated encryption scheme [SC16]. Recently, statistical fault attacks
(SFA) that are applicable to a wide-range of AES-based authenticated encryp-
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tion schemes including popular modes like GCM, CCM and OCB have been
published [Dob+16]. However, the presented attacks face some limitations. In
particular, they are only applicable to schemes where the secret key is processed
right before the data is output. Thus, it is typically not applicable to stream
ciphers or duplex-based authenticated encryption modes.

Our Contribution. In this chpater, we present the – to the best of our
knowledge – first fault attacks targeting unwrap calls that are applicable to im-
plementations of a broad range of nonce-based authenticated encryption schemes.
In particular, the presented attacks are applicable whenever the nonce is mixed
with the secret key during the initialization. This includes stream ciphers and
duplex-based authenticated encryption schemes for which most of the existing
fault attacks are not applicable.

We focus our analysis on Keyak and Ketje designed by Bertoni, Daemen,
Peeters, Van Assche, and Van Keer [Ber+c; Ber+b]. Both designs are make
use of the Keccak-p family of permutations [Ber+11c], which also underlies
Keccak/SHA-3 [Nat15]. Please note that the presented attacks do not exploit a
weakness inherent in the design of Keyak and Ketje, these two primitives just
serve as an example to show the applicability of fault attacks on implementations
of duplex-based authenticated encryption schemes.

Our attacks are based on statistical ineffective fault attacks (SIFA) (cf. Chap-
ter 6) and do not require an extensive profiling or characterization of the attacked
device. Additionally, they are resilient against “noise” induced by miss-located
faults, or in general fault inductions that do not behave as intended. As a
consequence, they can be easily applied in practice as demonstrated by our attack
targeting 8-bit software implementations of Keyak and Ketje running on an
AVR Xmega 128D4. Our choice of using the Xmega 128D4 as an evaluation
platform is motivated by the fact that our fault induction setup is most reliable
on this platform and so we can more accurately show differences in attack per-
formance between the two schemes. After inducing faults during unwrapping
and filtering for the inputs of 24 unaffected computations, we can recover large
parts of the secret keys. The remaining unknown key bits can then either be
brute-forced or further reduced by repeating the attack and inducing the fault at
a different point in time.

Outline. In Section 7.1, we give a short overview of authenticated encryption
schemes and provide a more detailed description of Keyak and Ketje, the
two authenticated encryption schemes that are the main target of our practical
attack evaluation. In Section 7.2 we discuss the idea and working principle of
the attack. Section 7.3 describes the practical evaluation of our fault attack on a
real microprocessor. We conclude the chapter in Section 7.4.
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7.1 Background

In this section, we first recall the concept of nonce-based authenticated encryption
with associated data. We then give a description of the family of permutations
Keccak-p and the two duplex-based authenticated encryption schemes Keyak
[Ber+c] and Ketje [Ber+b]. While Keyak and Ketje make use of instances of
Keccak-p, their modes of operation are slightly different.

7.1.1 Authenticated Encryption

An authenticated encryption scheme provides confidentiality and authenticity of
data and consists of two phases, the wrap call and the unwrap call. The wrap
call is usually modeled as a function of four input parameters: a secret key K,
unique nonce N , associated data A and plaintext P [Rog02]. The output of is
usually a tuple that consists of a ciphertext C and tag T :

E(K,N,A, P ) = (C, T )

The corresponding unwrap call takes the following five inputs: a secret key K,
unique nonce N , associated data A, ciphertext C and tag T . The authenticity of
A and C is verified via a MAC function that outputs a temporary tag T ? that is
then compared to the given T . If they are not authentic the computed plaintext
P is not released and the special error symbol ⊥ is returned instead:

D(K,N,A,C, T ) ∈ {P,⊥}

The concrete implementation of authenticated encryption schemes can dif-
fer significantly. Currently, many of the popular modes like GCM [MV04],
CCM [WHF03], EAX [BRW03], and OCB [Rog+01] are all based on block ci-
phers like AES [DR20]. However, since the announcement of CAESAR [CAE14],
we can also see an increasing number of dublex-based authenticated encryption
schemes. In the next section, we will present two such dublex-based designs:
Keyak and Ketje, in more detail, since we will use them to describe the attack
and for the practical evaluation.

7.1.2 Keccak-p

Keccak-p is a family of permutations and one of their members, Keccak-f [1600],
is used in the SHA-3 standard for hashing and extendable-output func-
tions [Ber+11b; NIS15]. Keccak-p[b,nr] is parameterized by a b-bit state,
organized in 5 × 5 lanes, and number of rounds nr. The round function of
Keccak-p consists of the 5 operations: θ, ρ, π, χ, ι that are applied to the state
in the presented order in every round. From these 5 operations χ is the only
nonlinear transformation. The purpose of θ, π and ρ is to cause diffusion while ι
breaks some symmetries.
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7.1.3 Keyak

Keyak is a family of authenticated encryption schemes using the Motorist
mode of operation [Ber+c]. While there exist five instances of Keyak, named
River, Lake, Sea, Ocean and LunarKeyak, covering two different state
sizes and different degrees of supported parallelization, we limit our description
to the (recommended) LakeKeyak instance. LakeKeyak makes use of the
Keccak-p[1600,p] ermutation and performs authenticated encryption with 128
to 256 bits of secret key, up to 1200 bits of nonce, and 128-bit tags. In the
following, we describe the Motorist mode of operation, as used in Keyak.
Whenever we refer to Keyak we mean LakeKeyak.

Motorist Mode. The Motorist mode defines how incoming plaintexts are
processed together with key, nonce, associated data in Keyak. It can be seen
as a layer on top of a duplex construction, more exactly, full-state keyed duplex
construction [Ber+11a], with the main difference being the size of the input
blocks. While the duplex construction only allows input blocks as large as the
outer part (rate r) of the underlying permutation, Motorist uses a full-state
keyed duplex [MRV15] that can make use of the full width of the permutation
during absorption as shown in Figure 7.1. While Motorist does provide support
for sessions, we do not describe this functionality in more detail here as our
implementation attack simply starts a new session for each call.
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p ...
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Figure 7.1: Simplified depiction of a full-state keyed duplex. p denotes Keccak-p, σ
denotes the input string, and Z denotes the key stream.

7.1.4 Ketje

Ketje is a family of authenticated encryption scheme consisting of the
MonkeyWrap mode that makes use of different members of Keccak-p.
While there exist four different instances of Ketje, named Ketje Jr, Ketje
Sr, Ketje Minor and Ketje Major, making use of the four different permu-
tations Keccak-p[200], Keccak-p[400], Keccak-p[800] and Keccak-p[1600],
our practical evaluation is performed on Ketje Jr. Ketje Jr is, together
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with some of the other instances, intended for usage on constrained devices. It
performs authenticated encryption with a 96-bit secret key and up to 86-bits
of nonce. Different to Keyak, in the specification of Ketje every call of the
permutation is slightly twisted. The twisted permutation Keccak-p∗ is an
extended version of the standard permutation Keccak-p and always starts
with an additional call of π−1 and ends with an additional call to π. Note that
in an actual implementation, these additional calls are only necessary during
absorbing/squeezing but not between two consecutive permutation rounds. In
the following we describe the MonkeyWrap mode of operation, as used in
Ketje. Whenever we refer to Ketje we mean Ketje Jr.

Monkey Wrap Mode. The MonkeyWrap mode defines how incoming plain-
texts are processed together with key, nonce, associated data in Ketje. The
initialization of MonkeyWrap is called Start which is similar to the initial-
ization of the Motorist mode. First, key K and nonce N are Xor-ed into
the zero-initialized state. Then 12 rounds of twisted Keccak-p∗ permutation
are performed. The key stream generation Step is accomplished by performing
duplexing calls, yet this time not the full width of the permutation is utilized, as
illustrated in Figure 7.2. Since the rate r of the permutation in Ketje is very
small only a 1-round twisted Keccak-p∗ permutation is needed in between Step
calls. Before the extraction of the tag starts, a 6-round twisted Keccak-p∗ per-
mutation is performed. While MonkeyWrap does provide support for sessions,
we do not describe this functionality in more detail here as our implementation
attack simply starts a new session for each call.
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Figure 7.2: Simplified depiction of the MonkeyWrap mode as used in Ketje Jr.
pnr denotes the application of a nr-round twisted Keccak-p∗[200] per-
mutation, σ denotes the input string, and Z denotes the key stream.

7.2 Attack Strategy

In our attack, we target the unwrap of queries in implementations of LakeKeyak
and Ketje Jr. To be precise, we observe the behavior of the unwrap of valid
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messages (N,A,C, T ) in the presence of faults that are induced during the
initialization phase. The valid messages stem from wrap queries to a corresponding
authenticated encryption instance loaded with the secret key under attack. For
both schemes, the initialization is the application of instances of Keccak-p to a
state that is the concatenation of the secret key K and a publicly known nonce
N . If the fault induction changes the outcome of this computation, the later
computed tag T will also change with overwhelming probability. When compared
to the transmitted tag T , the verification will then fail. If the induced fault does
not change the outcome of the initialization, the verification will succeed and the
unwrapping will return a plaintext. Please note that the actual plaintext is not
needed for the attack, we solely assume that the attacker is able to distinguish a
failed verification from a successful one.

As shown in Chapter 6, inducing faults in a specific intermediate variable of
a (cryptographic) computation over different inputs, followed by a subsequent
filtering for correct computations, lets us collect a set of input/output pairs
for which the targeted intermediate variable shows a biased distribution. In
our case, correct computations, and thus the occurrence of ineffective faults (or
less desirable missed faults), can be deduced from the condition that the tag
verification succeeds. Hence, we assume that the attacker is able to affect one or
multiple bits of the internal state before the application of χ in the 2nd round
of the initialization, so that the distribution of these bits is non-uniform for the
filtered inputs (N,A,C, T ). More concretely, we assume that the attacker is able
to collect several nonces N , which lead to one or multiple biased bits before the
2nd round χ-layer of the initialization. From this knowledge, the attacker is able
to extract information about the secret key. In the following section, we give a
detailed description of how key recovery is achieved for Keyak. A very similar
approach can then be used to perform key recovery for Ketje.

7.2.1 SIFA Key Recovery Strategy for Keyak

We now describe how key recovery can be performed when performing SIFA
attacks on implementations of Keyak. Similar as previously shown for the
AES block cipher in Chapter 6, in case of Keyak, this requires identifying key
bits that are combined with an attacker controlled input (nonce) bits after a
non-linear and subsequent (linear) mixing layer. We consider the calculation of
Aχ2

[x, y, z] as one such suitable choice and evaluate the this intermediate variable
under every possible assignment of the key bits and for every previously collected
value of the nonce N . For the right key guess, we expect to observe the highest
bias in Aχ2

[x, y, z]. But at first, we have to identify the involved bits.
To do so, we need to determine the bits at the input of the linear layer of

the 2nd round, which are involved in the calculation of Aχ2 [x, y, z]. The linear
layer of one round of Keccak-p[1600, 12] consists of the application of the single
round functions θ, ρ, and π. The function π just swaps the words, so that

Aχ2
[x, y, z] = Aπ2

[(x+ 3y) mod 5, x, z] .
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The function ρ rotates each lane by a different offset R[x, y]. Hence,

Aχ2 [x, y, z] = Aρ2 [(x+ 3y) mod 5, x, (z −R[(x+ 3y) mod 5, x]) mod 64] .

Finally, θ computes its output by Xor-ing each bit with the parity of two columns
in the array, thus, one bit Aχ2 [x, y, z] is the sum of 11 input bits to θ.

Aχ2 [x, y, z] =Aθ2 [(x+ 3y) mod 5, x, (z −R[(x+ 3y) mod 5, x]) mod 64]

⊕
4⊕

y′=0

Aθ2 [(x+ 3y − 1) mod 5, y′, (z −R[(x+ 3y) mod 5, x]) mod 64]

⊕
4⊕

y′=0

Aθ2 [(x+ 3y + 1) mod 5, y′, (z −R[(x+ 3y) mod 5, x]−1) mod 64]

Each of the 11 bits Aθ2 [xi, yi, zi] can be calculated using three input bits to χ.
Therefore,

Aθ2 [xi, yi, zi] =Aχ1
[xi, yi, zi]⊕

((Aχ1
[(xi + 1) mod 5, yi, zi]⊕ 1) ·Aχ1

[(xi + 2) mod 5, yi, zi]) .

Note that two bits at the input of θ in the 2nd round needed in the calculation
of Aχ2

[x, y, z] are adjacent bits of the same S-box, namely

Aθ2 [(x+ 3y) mod 5, x, (z −R[(x+ 3y) mod 5, x]) mod 64]

Aθ2 [(x− 3y − 1) mod 5, y, (z −R[(x+ 3y) mod 5, x]) mod 64] .

As a consequence, Aχ2 [x, y, z] depends on only 31 bits of Aχ1 [xj , yj , zj ]. The bits
at the input to the 1st round that are needed to compute the 31 bits Aχ1 [xj , yj , zj ]
can be determined in a similar manner as done for the second round. However,
doing so for general values of x and y gets a bit clumsy, hence, we focus on
the restricted case of calculating Aχ2

[0, 0, 0]. Determining the necessary bits
to calculate Aχ2 [x, y, z] by hand is quite time consuming and also error prone.
Thus, we have used a search tool [DEM15], which has been developed to search
for linear trails to identify the bits at the input of Keccak-p that are involved
in the calculation of a certain Aχ2

[x, y, z]. In Figure 7.3, we give the involved
bits for calculating Aχ2

[0, 0, 0]. The figure represents one lane as hexadecimal
value, where bits that are set to 1 are needed in the calculation of Aχ2

[0, 0, 0]. A
corresponding figure for Ketje Jr is given in Figure 7.4.

7.2.2 Recovered Bits

In this section, we will discuss how much information on the key bits can be
recovered by exploiting a bias in Aχ2

[x, y, z]. For the sake of simplicity, we will
stick to the example of Aχ2 [0, 0, 0]. Bits having a gray background in Figure 7.3
are bits that represent the 128 key bits. Hence, to compute Aχ2 [0, 0, 0], 25 bits
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Input to Bit positions

θ1

C-62-C1---9C---1 8E-12----C3----C 6-1--45----E-3-4 -384983--118---6 1---4228184--181
C-62-C1-189C---- 8E-12----C38---C 661--45----E-3-- -384982--118-3-6 1---5A28184--181
D-62-C1---9C---- 8E212----C3----C 6-1--45---3E-3-- -384986--118---6 1---4228194--181
C-62-C1---DC---- 8E-12----C34---C 6-11-45----E-3-- -3849C2--118---6 1-8-4228184--181
C-624C1---9C---- CE-12----C3----C 6-1--45----E-3-8 -384982--118-1-6 1--44228184--181

χ1

---------------1 8--------------1 8--------------1 8--------------- ---------------1
---------------1 8--------------1 8--------------- 8--------------- ---------------1
---------------1 8--------------1 8--------------- 8--------------- ---------------1
---------------1 8--------------1 8--------------- 8--------------- ---------------1
---------------1 8--------------1 8--------------- 8--------------- ---------------1

θ2

---------------1 8--------------- ---------------- ---------------- ---------------1
---------------- 8--------------- ---------------- ---------------- ---------------1
---------------- 8--------------- ---------------- ---------------- ---------------1
---------------- 8--------------- ---------------- ---------------- ---------------1
---------------- 8--------------- ---------------- ---------------- ---------------1

χ2

---------------1 ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Figure 7.3: Bits involved in calculation of Aχ2 [0, 0, 0]. The position of the 128-bit key
is highlighted in gray. Zeros are replaced by - to improve readability.

of the key have to be guessed. However, only the 17 bits:

Aθ1 [0, 0, 0] , Aθ1 [0, 0, 18], Aθ1 [0, 0, 20], Aθ1 [0, 0, 23], Aθ1 [0, 0, 36], Aθ1 [0, 0, 43],

Aθ1 [0, 0, 53], Aθ1 [0, 0, 54], Aθ1 [1, 0, 2] , Aθ1 [1, 0, 20], Aθ1 [1, 0, 21], Aθ1 [1, 0, 27],

Aθ1 [1, 0, 48], Aθ1 [1, 0, 58], Aθ1 [1, 0, 59], Aθ1 [1, 0, 63], Aθ1 [2, 0, 62]

can influence Aχ2
[0, 0, 0] in a nonlinear manner, while the 8 bits:

Aθ1 [0, 0, 19], Aθ1 [0, 0, 42], Aθ1 [0, 0, 49], Aθ1 [1, 0, 3] , Aθ1 [1, 0, 26], Aθ1 [1, 0, 45],

Aθ1 [1, 0, 57], Aθ1 [2, 0, 61]

only have a linear influence.
As a consequence, we can at most uniquely identify the 17 bits that influence

Aχ2
[0, 0, 0] in a nonlinear way. For the 8-bits that influence Aχ2

[0, 0, 0] in a linear
way, only their Xor-sum (parity) effects the value of Aχ2

[0, 0, 0]. Since for 8 bits,
half of the possible assignments have parity 0 and the other half has parity one,
we get at least 27 key candidates that always lead to the same result. Please note
that this is a rather simplistic evaluation and does not consider the dependencies
of the nonlinear bits and also the bits, which are used as nonce and constants.
In fact, the key recovery depends on the value of these bits, since an unfortunate
choices for the nonce can, for instance, lead to situations, where some S-boxes
are linearized for some key bits, or some key bits are always blocked, so that they
do not influence Aχ2 [0, 0, 0]. For instance, let us have a look at the results of one
of our concrete experiments given in Section 7.3. Instead of recovering 17 out of
the 25 bits uniquely from 27 key candidates scoring best, we are able to recover
15 of the 25 bits uniquely out of 29 key candidates that score best.
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Input to Bit positions

θ1

ff bf 7f bf fb
fe bf 7f bf fb
fe bf 7f ff fb
fe bf 7f bf fb
fe ff 7f bf ff

χ1

-1 81 81 8- -1
-1 81 8- 8- -1
-1 81 8- 8- -1
-1 81 8- 8- -1
-1 81 8- 8- -1

θ2

-1 8- -- -- -1
-- 8- -- -- -1
-- 8- -- -- -1
-- 8- -- -- -1
-- 8- -- -- -1

χ2

-1 -- -- -- --
-- -- -- -- --
-- -- -- -- --
-- -- -- -- --
-- -- -- -- --

Figure 7.4: Bits involved in calculation of Aχ2 [0, 0, 0]. Zeros are replaced by - to
improve readability.

7.3 Practical Evaluation

We now describe the practical evaluation of our attack on a microprocessor
implementation. Although we have performed attacks on both Keyak and
Ketje, we limit our description to (Lake)Keyak, since the attack procedure
is similar for both schemes. We do, however, state the results for both schemes
at the end of this section. We start this section by giving a quick overview of
the attack procedure in Section 7.3.1. We then describe the hardware/software
that we have used to perform our attack evaluation in Section 7.3.2. After
that, we state requirements on a fault setup more generally in Section 7.3.3.
Finally, we present the results of our fault attacks on LakeKeyak and Ketje Jr
in Section 7.3.4.

7.3.1 Attack Procedure

As described in Section 7.2, our key recovery exploits the input of specific unwrap
calls to Keyak. We are interested in unwrap calls that have a bias in one or
multiple bits of the state before χ in the 2nd round. To achieve the required
filtering of inputs we use statistical ineffective fault attacks (SIFA), as proposed
in Chapter 6.

Before the attack we set the secret key of the microprocessor Keyak imple-
mentation to a constant and unknown value. During the attack we send valid
messages, consisting of random nonce and tag, to the microprocessor, induce a
clock glitch with constant offset during the computation and observe the behavior.



7.3. Practical Evaluation 102

The valid messages stem from wrap queries to a corresponding authenticated
encryption instance loaded with the secret key under attack. The tag verification
is used to detect whether or not an induced fault was ineffective.

7.3.2 Attack Setup

The practical evaluation of our fault attack was done on an 8-bit Xmega 128D4
microprocessor. The attacked software implementation of Keyak consists of two
parts. The first part is a C implementation of the Motorist mode of operation.
The second part is a fast 8-bit AVR optimized assembler implementation of
Keccak-p. Both implementations are taken from the eXtended Keccak Code
Package [Ber+a] and therefore represent a good target software implementation
for our practical evaluation. The clock signal of the microprocessor is generated
by a Spartan-6 FPGA running at 12 MHz. We additionally use this FPGA for
the insertion of glitches onto the clock signal. The insertion of clock glitches is
achieved by adding an additional fast edge onto the clock signal at a specified
point in time. If timed correctly, this violates normal operating conditions of the
device and can result in temporary erroneous computations on the microprocessor.

In our practical evaluation we can force strong biases in virtually every state
bit that is affected by χ, however only in blocks of 8 bits at a time (which is not
surprising on a 8-bit architecture). We suspect that our glitch does skip one of
the Xor instructions in the bit-sliced χ implementation, but we cannot say for
sure though.

7.3.3 Attack Setup - Requirements

As we use SIFA, the requirements we have on the locality and especially the
effect of the fault are quite relaxed. Basically, we only need some sort of bias
in any bit at the input of χ in the 2nd round. This can be achieved, e.g., by
faulting instructions in χ, slightly before χ, or by directly faulting registers
using lasers. In the case of AES, such fault inductions have already been
demonstrated for multiple microprocessors (cf. Chapter 6) and even for hardware
co-processors [Dob+16]. One way to find a suitable glitch location in practice
would be to estimate the clock cycles until the targeted operation is executed.
Hence, in our scenario, one can estimate the time frame of the 2nd round and try
to induce a glitch in several different clock cycles towards the end of that round.

7.3.4 Results

Keyak. As already mentioned in Section 7.2.2, when getting a bias in the
bit Aχ2

[0, 0, 0] located at the input of the 2nd round χ-layer, 25 bits of the
key are involved in its calculation. In our attack, we guess these 25 bits and
evaluate the bias in Aχ2

[0, 0, 0] for each key guess. Since some of the guessed
key bits only influence Aχ2 [0, 0, 0] in a linear manner, we get several equivalent
key candidates having the same bias. As a consequence, Figure 7.5 shows
the advantage in bits the attacker gets from guessing key candidates down to
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a bias which also the correct key guess over just randomly guessing the key,
which is log2(#total keys)− log2(#candidate keys). 24 inputs to such unwrap
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Figure 7.5: Attack on Keyak. Advantage in bits when targeting Aχ2 [0, 0, 0] and
guessing the associated 25 bits of the 128-bit key.

computations are necessary to get a maximum advantage of 16 bits. In our case,
we get 29 keys ranked top that have the same bias (not considering its sign).
From those 29 keys, the values of 15 key bits can be uniquely determined. Due
to the architecture of the implementation, we do not only get a bias in one bit,
but one byte. By combining this information, we can uniquely determine 82-bits
of the key.

In our attack setup, we are able to perform about 20 faulted unwrap compu-
tations per second. According to the practical evaluation, in about 1 out of 250
of the cases the induced fault is ineffective. The total time it took us to gather
the required amount of inputs is roughly 5 minutes.

Ketje. In the attack on implementations of Ketje we use the same fault
location as in the case of Keyak. This is however not strictly necessary. Even
though both schemes use variants of Keccak-p during initialization, the influence
of key bits on one of our biased bits before χ in the 2nd round is quite different,
mainly due to the fact that the lane sizes are different. In contrast to LakeKeyak,
in Ketje Jr nearly all key bits influence each of our biased bits, most of the time
in a linear way. Hence, for Ketje Jr we instead guess the 200-bit equivalent
key before χ in the 1st round (i.e., after the first linear layer). By doing so we
can reduce the dependency on the equivalent key to 31 bit and guessing becomes
feasible in practice.

In our attack setup we can recover about 19 bits of the equivalent key that
correspond to one biased bit in about 10 hours using a single thread on an
Intel Xeon CPU. Note that this time can be significantly improved, since we
used for our evaluation purposes just the unoptimized reference implementation.
Furthermore, the task of key guessing can be parallelized trivially. If we parallelize
the computations for, e.g., the 8 bits that were affected by our fault induction
we can recover 152 bits of the equivalent key in the same amount of time. The
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remaining bits can be determined either by brute-force or repeating key recovery
for a different fault location.

In total, again 24 inputs of unaffected unwrap computations are necessary
for key recovery as shown in Figure 7.6. The total time it took us to gather the
required amount of inputs is below 5 minutes. Hence, the time complexity of
entire attack is dominated by the key guessing and was performed in about 10
hours.
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Figure 7.6: Attack on Ketje. Advantage in bits when targeting Aχ2 [0, 0, 0] and
guessing the associated 31 bits of the 200-bit equivalent key.

7.4 Conclusion

In this chapter, we have presented the first fault attacks targeting a broad
range of nonce-based authenticated encryption schemes. While fault attacks
on authenticated encryption have already been shown before, they are mostly
limited to schemes that additionally feature a final key addition, and thus not
directly applicable to most duplex-based authenticated encryption modes. We
close this gap and show attacks based on SIFA, which are in principle applicable
to most nonce-based authenticated encryption schemes that perform some sort
of initialization where the nonce (or an other publicly known input) is mixed
with the secret key. Since we only need to know whether a fault induction was
ineffective or not, attacking the unwrapping in authenticated encryption schemes
gives us a perfect oracle. Our attack evaluation is focused on Keyak and Ketje,
however, we conjecture that our attack can also be adopted to other schemes
like the CAESAR finalists Acorn, Aegis, Ascon, Morus, etc. in a rather
straightforward way.

SIFA is resistant to popular fault countermeasures like double-execution and
infection-based countermeasures and even additional masking does not preclude
this attack vector. The key recovery is capable of dealing with an arbitrary
amount of noise (however requiring more faulted unwrap computations) that
might arise due to possibly imperfect fault inductions. The effort required to
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perform our attack is rather low. We neither require perfectly timed faults nor
precise knowledge about the effect of the induced fault. In our fault setup we are
able to collect enough material for key recovery within 5 minutes. The actual
key recovery for Keyak and Ketje is easily parallelizable and takes about 30
minutes and 10 hours, respectively. The hardware cost of the attack setup does
not exceed 300$.
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8
Statistical Ineffective Fault Attacks on

Masked AES with Fault Countermeasures

The previous chapters have shown the capabilities of statistical ineffective fault at-
tacks (SIFA) against implementations of various kinds of symmetric cryptographic
schemes, and in the presence of typical fault countermeasure techniques. In this
chapter, we extend the scope of our analysis to implementations featuring addi-
tional countermeasures against passive side-channel attacks, like power [KJJ99]
or EM analysis [QS01]. In the case of symmetric cryptography, one commonly
used approach to protecting an implementation against these attacks is to use
masking, essentially a secret-sharing scheme, in software or hardware [RP10;
Rep+15a; GMK16].

When considering combined countermeasures against both active and passive
attacks respectively, the standard reasoning is that the effects of masking and error-
detection add up. For example, we can assume a block cipher implementation
protected by a masking scheme operating on d + 1 shares that performs each
masked block cipher computations r + 1 times and only releases an output if
all redundant computations match. In this case, the implementation is typically
assumed to be secured against up to r fault inductions in the block cipher
computations due to the detection countermeasure, as well as secured against
side-channel attacks able to observe up to d intermediate variables of choice due
to the masking scheme.

This reasoning is valid for fault attacks that exploit faulty outputs of a
cryptographic algorithm to reveal the key. The most prominent attacks of this
type are differential fault attacks (DFA) [BS97] and statistical fault attacks
(SFA) [Fuh+13]. However, some variants of fault attacks are based on a different
approach. ineffective fault attacks (IFA) [Cla07] and statistical ineffective fault
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attacks (SIFA) (cf. Chapter 6), exploit those outputs of a cipher that are cor-
rect although a fault induction has been performed. While IFA requires exact
knowledge about the location and effect of a fault, SIFA has much more relaxed
requirements, thus allowing to exploit noisy faults whose exact effect is unknown
to the attacker. The basic idea of SIFA is to repeatedly execute a cryptographic
operation with a fixed key for different inputs and to apply a fault induction for
each execution. The attacker then collects those outputs of the cryptographic
operation where the fault induction has not changed any intermediate variable.
Given that the implementation is protected by an error-detection scheme, such
as a redundant execution of the cipher, this corresponds exactly to the valid
outputs of the system. In fact, the error detection that is implemented against
DFA provides exactly the filtering of the outputs which is needed to apply SIFA
or IFA.

Our Contribution. Before, implementations combing masking and error-de-
tection schemes have been typically thought to be secure against attacks exploiting
single ineffective faults due to masking, as discussed for example by Clavier for
IFA [Cla07]. It was typically assumed that all shares representing an intermediate
variable would need to be faulted for exploiting ineffective faults and it was an
open question whether this can be done efficiently in practice.

In this chapter, we show that SIFA attacks are much more powerful than
expected before. Our central contribution is to show that the practical difficulty
of performing SIFA attacks is not only independent of the degree of redundancy
but also essentially independent of the number of shares in a typical masking
scheme. This fact makes SIFA an especially promising attack strategy against
cryptographic implementations featuring countermeasures against both power
analysis and fault attacks. Additionally, and in some contrast to [Fuh+13] and
our works in Chapter 6 and Chapter 7, we show that SIFA does not necessarily
require faults whose direct effect on the targeted intermediate variable causes a
bias. Instead, any type of fault effect, such as deterministic bitflips, while not
considered suitable for mounting SIFA attacks before, can be suitable to mount
SIFA attacks. In order to better explain why this is the case, we introduce a
change of perspective that separates the location of a fault induction within a
computation from the location of effected intermediate variables that an attacker
can observe during key recovery. To back up our claims we provide a broad
evaluation based on multiple (masked) S-boxes and two implementations of the
entire AES block cipher.

More concretely, we demonstrate that faulting a single share during the
computation of an S-box is often sufficient to induce a bias in an native interme-
diate variable, which can then be exploited with a statistical analysis based on
SIFA. Unlike classical fault attacks, attackers cannot directly use this fault as a
distinguisher for the key recovery attack: they cannot recover this intermediate
variable from observing the ciphertext and guessing parts of the key, but can only
recover the native output of the S-box (cf. Figure 8.1). We analyze the impact
of the local fault on the native output for several different S-boxes (including
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Figure 8.1: Biased fault attacks on masked, redundant implementations: High-level
view.

the AES S-box), fault distributions, masking schemes, and protection orders, as
well as other fault countermeasures like dummy rounds. We conclude that in
all analyzed cases, a single fault attempt per encryption is sufficient to recover
part of the key, given a suitable number of faulted encryptions. This number
depends on the precision of the fault and the deployed countermeasures; for
example, 1000 encryptions with a cheap clock glitching setup are sufficient for
an 8-bit AES software implementation protected with 10th-order masking and
arbitrary temporal redundancy on block cipher level running on a standard 8-bit
microcontroller.

8.1 Faults on Masking

In this section, we study how single faults in masked cryptographic computations
affect their native inputs and outputs. First, we discuss how faults influence the
distribution of native outputs of masked And gates. After that, we evaluate how
single faults influence native inputs/outputs of entire masked S-boxes. Finally, we
take a closer look at the root cause allowing SFA and SIFA in masked S-boxes and
argue that these attacks are probably always applicable no matter the concrete
S-box design.

For an easier understanding of why single faults on a single share can cause a
bias in native variables, we consider very simple fault models such as stuck-at
faults in the following exposition. However, it is important to note that the attack
approach generalizes efficiently to noisy, unpredictable faults. For a discussion
of how the attack complexity scales under the influence of noise, we refer to
Section 8.3 and the SIFA analysis in Chapter 6).

8.1.1 Faulting Masked AND Gates

Masking is a secret sharing technique that splits security sensitive variables
of cryptographic algorithms into multiple randomized shares to protect their
implementations against certain power analysis attacks. We provide a more

https://thenounproject.com/term/masks/1595665/
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detailed description of masking in Section 2.2.1. While the application of masking
can be easily performed for functions which are linear over GF(2n) – for example,
the masked calculation of x⊕y can be performed share-wise (xi⊕yi) –, the secure
implementation of nonlinear functions usually requires the introduction of fresh
randomness. We now consider the generic algorithm for masked multiplication
(or And in GF(2)) by Ishai et al. [ISW03] as an example for such a nonlinear
function (cf. Algorithm 2.1). In order to securely calculate q = x · y, each of
the d + 1 shares of x is multiplied with each of the shares of y, resulting in
(d+ 1)2 multiplication terms. Subsequently, the multiplication terms are summed
up together with fresh random variables denoted ri,j , and distributed to the
output shares qi. In general, the joint distribution of any d shares of q in the
masked multiplication algorithm is uniform, or in other words, any d shares are
independently and identically (uniformly) distributed. It thus appears as if in
order to insert a bias in the underlying native variable, an attacker would need
to insert a biased fault in either each share of x or y, or to insert a bias in each
of the component functions in the calculation of q. However, in the following, we
show that this intuition is not right.

We first note that the calculation of the And q = x · y itself has a probability
of 25% for q to be 1. An attacker therefore successfully biases the masked And
gate if the probability of q to be 1 is more or less likely than 25%. As an example,
we consider an attacker who can skip any And calculation in Section 2.2.1, for
instance the first And calculating x0y0 in q0. The shared function then effectively
calculates q (i.e. q0 ⊕ q1) to be x1y1 ⊕ x0y1 ⊕ x1y0, which has a probability of
37.5% to be 1. If the attacker instead introduced a fault that skips the addition
of the uniformly random bit r0,1 in q0, then the distribution of q would again be
biased, since the probability of observing a 1 changes from 25% to 50%.

We observe the same biases when looking at single faults for other masked
And gates, like the one used in the CMS scheme of Reparaz et al. [Rep+15a] or
in the domain-oriented masking (DOM) scheme by Gross et al. [GMK16]. This
same bias behavior results from the fact that these masked Ands calculate the
same terms xiyj . The masked Ands only differ in the arrangement of xiyj in q0

and q1, and the amount of used fresh randomness. Since q is equal to q0⊕ q1, the
arrangement of the terms has no influence on the bias behavior of q, and a fault
of an addition of a single random r bit has the same impact on all masked Ands.

Another prominent protection mechanism falling in the category of masking
schemes are threshold implementations [NRR06]. When compared to masking
schemes like CMS and DOM, threshold implementations require an increased
number of shares to achieve first-order side-channel resistance but can do so
without requiring fresh randomness. In order to explore the impact on threshold
implementations, we look at a four-share realization of a first-order masked And
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gate by Nikova et al. [NRR06]:

q0 = (x2 ⊕ x3)(y1 ⊕ y2)⊕ y1 ⊕ y2 ⊕ y3 ⊕ x1 ⊕ x2 ⊕ x3

q1 = (x0 ⊕ x2)(y0 ⊕ y3)⊕ y0 ⊕ y2 ⊕ y3 ⊕ x0 ⊕ x2 ⊕ x3

q2 = (x1 ⊕ x3)(y0 ⊕ y3)⊕ y1 ⊕ x1

q3 = (x0 ⊕ x1)(y1 ⊕ y2)⊕ y0 ⊕ x0

(8.1)

For this shared And gate, we perform two experiments. In the first experiment,
we have a look at the distribution of the output q = q0 ⊕ q1 ⊕ q2 ⊕ q3 assuming
an instruction skip. In the second, we fix one input share x0 to zero and look
what happens.

For the instruction skip, we assume that in q0 one instruction is skipped and
so q0 = (x2)(y1⊕ y2)⊕ y1⊕ y2⊕ y3⊕ x1⊕ x2⊕ x3 is calculated, the other shares
are processed correctly. In this case, we observe that for all 256 possible values
of the shared input, the native output is 160 times (62.5%) 0 and 96 (37.5%)
times 1, a clear deviation of the value a correctly computed And should have.

Next, we fix x0 to zero and perform the computations according to Equation 8.1
for all 256 possible values the shared input can take. If we now look at q, we see
that 192 times a 0 (75%) appears and 64 times a 1 (25%), which corresponds
to the distribution of a correct And gate. However, if we only consider correct
computations of q = x · y, we observe that only 192 out of 256 computations are
performed correctly. For those correct computations q is 160 times a 0 (83.3%)
and 32 times a 1 (16.6%). This “filtered” distribution is the one an attacker can
potentially exploit in the case of SIFA. In the next section, we will discuss the
consequences of our observations with respect to S-boxes.

8.1.2 Faulting Masked S-boxes

In this section, we discuss how single faults influence the behavior of S-boxes. It is
worth mentioning that our selection of masked S-boxes is arbitrary and does not
imply that those S-boxes are weaker or more susceptible to SFA and SIFA than
others. We have selected those S-boxes, because they have a simple and compact
description. We will start with a compact 4-bit S-box called Sbox13 [Ull+11]
shown in Figure 8.2. We have implemented a masked implementation of this
S-box in software by using a four-shared threshold implementation of And (see
Equation 8.1), Or and Xor. We target exclusively the And labeled with q, x,
and y in Figure 8.2.

For the first experiment, we assume an instruction skip that alters the
execution of the first And of the S-box, changing the calculation of one share q0

to q0 = (x2)(y1 ⊕ y2) ⊕ y1 ⊕ y2 ⊕ y3 ⊕ x1 ⊕ x2 ⊕ x3. In Figure 8.3a, we record
the distribution of each native input variable and each native output variable for
each of the 24·4 = 65536 shared input combinations, which can be exploited by
an SFA [Fuh+13], as well as the “filtered” distribution for ineffectively faulted
S-box transitions, which can be exploited by SIFA (cf. Chapter 6). This “filtered”
distribution stems from the subset of transitions, for which the induction of the
fault has no influence on the output of the S-box.
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Figure 8.2: Schematic of the 4× 4 S-box: Sbox13 [Ull+11].
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(a) Fault example 1: Skip first Xor instruction in share q0 in Equation 8.1.
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(b) Fault example 2: Set input share x0 of the first And to zero in Equation 8.1.

Figure 8.3: Distribution of input I and output O for faulted 4× 4 Sbox13.

As we can see in Figure 8.3a, in the unfiltered case, we see a clearly non-
uniform distribution, which can be possibly exploited by an SFA. However, we
observe a uniform distribution in the SIFA case. So does this mean this S-box is
secure against SIFA?

Let us consider the distributions we obtain when setting one share x0 at the
input of the first And permanently to 0. The corresponding distributions we
get in this experiment are shown in Figure 8.3b. As we can see in Figure 8.3b,
the situation for this fault changes, so that now, the ineffective faults can be
exploited, whereas the distribution without filtering cannot be exploited. Until
now, we have exploited the sequential sharing of instructions, especially that we
can change the distribution of an And gate. So one might wonder what happens
if an S-box is directly shared, so that the output shares are uniformly distributed.
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Figure 8.4: Distribution of I,O for faulted 4-shared Keccak S-box.

To explore the case of directly shared S-boxes, let us take a closer look at the
uniform 4-share threshold implementation of the Keccak S-box proposed by
Bilgin et al. [Bil+13]. Here, A[i], B[i], C[i], and D[i] represent the 4 shares of
bit i with i = 0, . . . , 4. While the bit i = 3 is calculated by:

A′[3]← B[3]⊕B[0]⊕ C[0]⊕D[0]⊕ ((B[4]⊕ C[4]⊕D[4])(B[0]⊕ C[0]⊕D[0]))

B′[3]← C[3]⊕A[0]⊕ (A[4](C[0]⊕D[0])⊕A[0](C[4]⊕D[4])⊕A[0]A[4])

C ′[3]← D[3]⊕ (A[4]B[0]⊕A[0]B[4])

D′[3]← A[3]

the other bits i = 0, 1, 2, 4 are calculated by:

A′[i]←B[i]⊕B[i+2]⊕
((B[i+1]⊕ C[i+1]⊕D[i+1])(B[i+2]⊕ C[i+2]⊕D[i+2]))

B′[i]←Ci ⊕ C[i+2]⊕
(A[i+1](C[i+2]⊕D[i+2])⊕A[i+2](C[i+1]⊕D[i+1])⊕A[i+1]A[i+2])

C ′[i]←D[i]⊕D[i+2]⊕ (A[i+1]B[i+2]⊕A[i+2]B[i+1])

D′[i]←A[i]⊕A[i+2]

Now, in our simple experiment, let us consider that bits 0 to 3 are calculated
correctly and an attacker changes the value of one input share A[0] always to 0
before the calculation of the 4 shares for output bit i = 4. Then an attacker is
able to mount SIFA as indicated by the distributions of Figure 8.4. This leads
again to an exploitable bias of the distribution of native variables at the output
of the S-box and the attacker can mount SIFA.

The aim of this section was to give reproducible, easy-to-follow examples of
inducing a bias in the native variable of masked S-boxes by just faulting one
share of the S-box. We want to mention that the given ways and locations of
introducing the faults are not exhaustive and that there are many more locations
and various types of faults that make an attack successful. In the next section,
we give a closer view on the problem of protecting an S-box against these attacks
and get more insight into the effect allowing statistical attacks with the help of a
3-bit S-box as an example.

8.1.3 A Closer Look

In general, fault attacks exploit knowledge about intermediate variables of crypto-
graphic primitives, which is gained by disturbing the computation or intermediate



8.1. Faults on Masking 114

variables directly. In the case of DFA [BS97], this knowledge is that in certain
intermediate bits or bytes a difference is induced, while others remain fault-free.
In the case of SFA and SIFA, this knowledge is that the distribution of certain
intermediate variables is changed from a uniform to a non-uniform distribution.
This allows an attacker to guess parts of the round key and calculate backwards
to these influenced intermediate variables from collected ciphertexts. If a key
guess is wrong, an attacker expects to see a distribution of intermediate variables,
which is closer to uniform compared to the guess of the right key.

Getting such a non-uniform distribution of intermediate variables can be
achieved in many ways. For ciphers following the SPN structure, where every
S-box and the linear layer is a bijective function (permutation), non-uniform
distribution of intermediate variable can be achieved, for instance, by disturbing
the computation of a single S-box, so that this S-box does not act as a permutation
anymore. While such a behavior can be expected from an native S-box in the case
of a fault induction, this seems quite counterintuitive for masked implementations
at first glance. Thus, we will first discuss the native case to get more insight in
which cases SFA and SIFA will work. Then we will take a closer look on masked
S-box implementations.

Influencing Native S-boxes

First, we will explore the case of SFA. We consider a bijective S-box, as illus-
trated in Figure 8.5. For the sake of simplicity, let us assume that the S-box
is implemented in a bit-sliced manner (as a sequence of instructions), or as a
Boolean circuit in hardware. Let us further assume that an attacker influences
the correct computation via fault inductions. By faulting this computation, it is
very likely that the faulted S-box does not behave as a bijection, but rather as a
non-surjective function. This leads to a non-uniform distribution of intermediate
variables, which can be exploited with SFA. In the case of SIFA, fault inductions
that affect the S-box output are filtered out and hence not considered in the
analysis. This filtering can happen directly by a detection-based countermeasure
that does not release faulty outputs or by an attacker that repeats each query,
once without fault induction, and comparing the obtained results.

S-boxI O

Figure 8.5: An native S-box.

To get more insight into the behavior of a faulted S-box, we will use the 3× 3
S-box χ based on Daemen’s χ-layer [DGV94; Dae95] as an illustrative example.
Figure 8.6a shows the 3-bit S-box χ, where the red cross represents a fault that
sets the input of the subsequent inversion to zero and hence the input of the
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And gate to 1. Please note that this is only one example of many how to fault
an S-box to apply an SFA or SIFA.
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(c) Faulted mapping

Figure 8.6: 3-bit S-box χ with a single fault.

The fault depicted in Figure 8.6a changes the behavior of the χ S-box, which
is not bijective anymore. Figure 8.6c shows the transition graph for the faulted
S-box. The fault just changes the transitions depicted in red.

In our case, the transitions mapping from 3→ 1 and 7→ 7 in the unfaulted
S-box (Figure 8.6b), now map from 3 → 5 and 7 → 3 (considering I[0] and
O[0] being the LSB). This means that the output values 1 and 7 never appear,
but 3 and 5 appear twice, leading to a non-surjective behavior. In the case of
SIFA, the red edges represent fault inductions that show an effect on the output.
When applying SIFA, those edges are filtered out and just the black edges remain.
Hence, when performing SIFA, the correct transitions 3→ 1 and 7→ 7 do not
appear and an attacker can observe an exploitable non-uniform distribution of
intermediates.

Influencing Masked S-boxes

S-box
I1 O1

I0 O0

(a) Implementation with 2 shares

S-boxI O

R[0]R[1] R[i]

(b) Functional equivalent view

Figure 8.7: A masked S-box.

Now let us have a look at a shared bijective S-box. For instance, consider
the masked S-box shown in Figure 8.7a that takes two shares as input and
returns two output shares. Here, the goal for an attacker is also to influence the
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distribution or transitions of the native variables I = I0 ⊕ I1 and O = O0 ⊕O1,
but does not care about the concrete values of the shares. For this reason, it is
easier to work with the functional equivalent model shown in Figure 8.7b. In
this model, we see a masked S-box as a function, which takes an native input I
and some randomness R[i] and produces an native output O. Here, some of the
random bits symbolize all values a shared input can take in a real implementation,
e.g., I0 = I ⊕ R[0], and I1 = R[0], while others represent randomness used in
the masked implementation. Now, we can see masking as a very special and
complicated function, which takes the inputs I, R[0], R[1],. . .R[i] and produces
an output O, so that the same I always leads to the same O for all possible
choices of R[0], R[1],. . .R[i]. It seems very unlikely that a shared S-box behaves
in the same manner in the presence of faults.

To apply SFA successfully, we need that not all values for O (iterating over
all values of I) appear the exact same number of times when counting for all
possible assignments of R[0], R[1], and R[2]. This prerequisite is very likely to
hold considering an attacker that can tamper with the intermediate calculation
performed, even when restricting the attacker to just manipulate one share used
in an intermediate calculation. Similarly, to apply SIFA successfully, we need a
fault such that among the ineffectively faulted computations, not all values for I
or O appear the exact same number of times over all values of R[0], R[1],. . .R[i].
This condition is similarly very likely to happen in practice when introducing
just single faults, as we will show with our practical experiments in Section 8.2.

I[0]

I[1]

I[2]

O[2]

R[0] R[1] R[2]

I1[2]

I0[2]

I1[1]

I0[1]

I1[0]

I0[0]

O1[2]

O0[2]

O1[1]

O0[1]

O1[0]

O0[0]

Calculation of
other shares

O[1]

O[0]

Figure 8.8: Single fault on masked 3-bit χ S-box.
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As an example, consider again 3-bit χ S-box, now with the following masked
implementation:

O0[i]← (I0[i+ 1]⊕ 1)I0[i+ 2]⊕ ((I0[i+ 1]⊕ 1)I1[i+ 2]⊕ I0[i])

O1[i]← I1[i+ 1]I0[i+ 2]⊕ (I1[i+ 1]I1[i+ 2]⊕ I1[i])

This masked S-box just serves us as an illustrative example of the effect of
faults on an S-box, hence, we do not care about potential positioning of registers
or additional randomness at the output for re-sharing. Figure 8.8 shows the
equivalent circuit of the S-box, where again we just set a single value to 0. The
result of this fault is that the value of O0[2] equals I0[2]. Everything else is
calculated correctly. For our example depicted in Figure 8.8, we list all possible
assignments of I[0], I[1], I[2], R[0], R[1], and R[2] in Table 8.1. The entries
marked in red in Table 8.1 are entries where the fault depicted in Figure 8.8 has
an effect. Due to the more complex calculations that happen for masked S-boxes,
we get a more complex relation between masks and actual values of bits. For
instance, the transition 2 → 6 is only valid if R[0] = 1 and wrong (2 → 2) if
R[0] = 0.

Table 8.1: Transitions of faulted masked 3-bit S-box χ.

I[2] R[2] I[1] R[1] I[0] R[0] O[2] O[1] O[0]
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 1
0 0 0 0 1 1 0 1 1
0 0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 1 0 0 1 1
0 0 0 1 1 1 0 1 1
0 0 1 0 0 0 0 1 0
0 0 1 0 0 1 1 1 0
0 0 1 0 1 0 0 0 1
0 0 1 0 1 1 1 0 1
0 0 1 1 0 0 0 1 0
0 0 1 1 0 1 1 1 0
0 0 1 1 1 0 0 0 1
0 0 1 1 1 1 1 0 1
0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 1 1
0 1 0 0 1 1 0 1 1
0 1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1
0 1 0 1 1 1 0 1 1
0 1 1 0 0 0 0 1 0
0 1 1 0 0 1 1 1 0
0 1 1 0 1 0 0 0 1
0 1 1 0 1 1 1 0 1
0 1 1 1 0 0 0 1 0
0 1 1 1 0 1 1 1 0
0 1 1 1 1 0 0 0 1
0 1 1 1 1 1 1 0 1

I[2] R[2] I[1] R[1] I[0] R[0] O[2] O[1] O[0]
1 0 0 0 0 0 1 0 1
1 0 0 0 0 1 1 0 1
1 0 0 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0
1 0 0 1 0 0 1 0 1
1 0 0 1 0 1 1 0 1
1 0 0 1 1 0 1 0 0
1 0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 1 0
1 0 1 0 0 1 0 1 0
1 0 1 0 1 0 1 1 1
1 0 1 0 1 1 0 1 1
1 0 1 1 0 0 1 1 0
1 0 1 1 0 1 0 1 0
1 0 1 1 1 0 1 1 1
1 0 1 1 1 1 0 1 1
1 1 0 0 0 0 1 0 1
1 1 0 0 0 1 1 0 1
1 1 0 0 1 0 1 0 0
1 1 0 0 1 1 1 0 0
1 1 0 1 0 0 1 0 1
1 1 0 1 0 1 1 0 1
1 1 0 1 1 0 1 0 0
1 1 0 1 1 1 1 0 0
1 1 1 0 0 0 1 1 0
1 1 1 0 0 1 0 1 0
1 1 1 0 1 0 1 1 1
1 1 1 0 1 1 0 1 1
1 1 1 1 0 0 1 1 0
1 1 1 1 0 1 0 1 0
1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1
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Again, we can represent all possible transitions from inputs I, to the outputs
O in a graph shown in Figure 8.9 (in a similar way as in Figure 8.6c). However,
due to the 23 possible ways of masking our input variables, each transition from
input to output will happen 8 times for an unfaulted masked 3-bit S-box χ. In
the faulted case, this condition does not hold anymore as shown in Table 8.1.
Hence, we have additional transitions shown in red in Figure 8.9. These “wrong”
transitions also reduce the number of times the “correct” transition happens.
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Figure 8.9: Transition graph of faulted masked 3-bit S-box χ.

If we now count the number of transitions in Figure 8.9 that lead to a certain
value O, we see that 12 transitions lead to values 3 and 5, whereas only 4 lead
to 1 and 7. This means that an attacker faulting a device can apply an SFA,
since the attacker can expect a non-uniform distribution of the variable after the
S-box for correct key guesses. If we apply SIFA, the transitions marked in red in
Figure 8.9, will be filtered. As an effect, the transitions 2 → 6, 3 → 1, 5 → 2,
and 7→ 7 appear with reduced frequency for uniformly distributed R[0], R[1],
and R[2]. Again, this can be exploited in a key recovery attack.

8.2 Attack Evaluation

In this section, we demonstrate the applicability of statistically ineffective fault
attacks (SIFA) for two very different publicly available masked AES implemen-
tations. First, we perform a practical attack evaluation for the provable secure,
higher-order masked AES implementation from Rivain et al. [RP10] on a stan-
dard 8-bit microcontroller (ATXmega 128D4). We then present a comprehensive
evaluation of simulated faults for the 32-bit, bitsliced, first-order masked AES
implementation of Schwabe and Stoffelen [SS16]. Since both implementations do
not originally have additional fault countermeasures in place, we added temporal
redundancy, meaning that the block cipher is executed multiple times and the
ciphertexts are compared. The number of redundant computations was set to
two, since more redundancy does not affect the effectiveness of SIFA.
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Our experiments require multiple faulted encryptions, but only one fault
induction per encryption. The precise location as well as the actual effect of the
induced fault does not need to be known by the attacker. Indeed, inducing a
fault anywhere in the shared S-box in round 9 likely leads to a situation that is
similar as described in Section 8.1.3. The resulting joint non-uniform (biased)
distribution over all shares of an intermediate variable can then be used to
distinguish correct and wrong key candidates (cf. Section 7.1).

8.2.1 Practical Attack on AES from Rivain et al.

The higher-order masked AES from Rivain et al. [RP10] consists of a generic
dth-order masked S-box that is combined with a linear layer for the d + 1
shares of the AES state. The target of our fault induction is the shared S-box
implementation in round 9. First, we briefly describe the implementation of
the masked S-box. Then we present the attack setup that was used for fault
induction. The results of this practical evaluation are stated at the end of this
section.

Generic Higher-Order Masked S-box

The algebraic description of the 8-bit AES S-box consists of determining the
multiplicative inverse of a number in F28 = F2[x]/(x8 +x4 +x3 +x+ 1), followed
by an affine transformation over F8

2. While masking the affine transformation is
trivial, since it can be calculated separately for each share, the calculation of the
masked multiplicative inverse requires more work. In the design of Rivain et al.
the inversion is calculated via the power function x→ x254 over F28 which is in
return calculated via the square-and-multiply algorithm. The squaring operation
in F28 is a linear function which leaves the masking of the field multiplication
as the only non-trivial task. The used algorithm for dth-order masked field
multiplication is based on the ISW scheme (cf. Algorithm 2.1). For a more
detailed description we refer to the original paper [RP10].

Attack Setup

In the practical evaluation, we perform fault inductions on an ATXmega 128D4
via clock glitching. More precisely, we insert an additional fast clock cycle in
between two ordinary clock cycles during the execution of one of the redundant
encryptions. The width of the induced clock cycle is chosen such that it is
recognized by the microprocessor but too short to allow a correct execution of
the current instruction. The target of our fault is one of the higher-order masked
field multiplication operations (SecMult) that occur multiple times (1st-order:
64 times, 10th-order: 2880 times) during the computation of the masked S-box in
round 9. We neither require to fault one specific SecMult invocation nor to fault
one specific instruction within any of the SecMult invocations. In fact, any fault
that causes a joint non-uniform distribution over all shares (cf. Section 8.1.2) is
sufficient for our attack. For this reason, finding a suitable fault location might
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actually be easier for higher-order masked implementations since the runtime
of masked S-boxes grows faster than the runtime of the masked linear layer for
increasing masking orders.

The implementation of the higher-order masked AES by Coron et al. [Cor17]
has a configurable masking order d. Our experiments were performed up to 10th-
order masking, with temporal redundancy as an additional fault countermeasure.
In order to attack such a protected implementation we exploit statistically
ineffective faults. The restriction to ineffective faults is required, since we want to
circumvent the redundancy countermeasure and the subsequent statistical fault
analysis is required, since the effect of a fault is almost impossible to predict, in
particular if masked and/or unknown implementations are attacked.

If the induced fault results in a faulty computation we do not observe any
ciphertext, because of the redundancy countermeasure. However, we do observe
correct ciphertexts stemming from faulted encryptions where the induced fault
was ineffective. This filtered set of correct ciphertexts can then again be used to
perform key recovery. Since our attacks work comparably well for any masking
order d we only state concrete results for d = 10 in this section.

Results

In Figure 8.10, we show the distribution of AES state bytes in round 9 from the
48 collected correct ciphertexts. For a correct guess of round key 10, which has
to be done in 32-bit chunks in an actual attack, we can observe a strong biased
distribution in one of the state bytes in round 9 which enables key recovery.
Note that in the attack we only exploit correct ciphertexts and thus successfully
circumvent the redundancy countermeasure. Already 20 (of the 48) collected
correct ciphertexts stemming from about 1 000 faulted encryptions the SEI of
the observed distributions is the highest for the correct partial key guess. The
time required for collecting the correct ciphertexts was about 3 minutes, and key
recovery was performed in about 2 minutes with negligible memory requirements.
Repetitions of the experiment lead to very similar results.

(a) Correct key guess. (b) An incorrect key guess.

Figure 8.10: 10th-order masked AES with temporal redundancy. One clock
glitch was performed during the calculation of the masked Sbox in round
9. Distribution of AES state bytes after S-box in round 9 after collecting
a sufficient amount of correct ciphertexts. 32 key bits can be recovered.
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8.2.2 Simulated Attacks on AES Implementations from
Schwabe and Stoffelen

In this section, we present a comprehensive analysis of simulated faults for an
assembler-optimized, masked AES implementation for the 32-bit STM32 F3
platform with high practical relevance of Schwabe and Stoffelen [SS16]. This
implementation can encrypt two 128-bit inputs per block cipher call in CTR
mode and is fully unrolled. For our purposes, we add temporal redundancy but
only encrypt one 128-bit input per block cipher call in ECB mode to have the
same scenario as in the previous section. We briefly describe the masked AES
S-box implementation of Schwabe and Stoffelen and then we discuss the results
of our evaluation that is split into three parts:

First, we analyze how many instructions in the masked S-box in round 9 are
“susceptible” to faults considering two common fault models, i.e., would allow an
attacker to mount SIFA. Then we pick one susceptible instruction and discuss the
required effort of mounting SIFA considering 7 common fault models. For each
fault model we give the required amount of faulted encryptions and the amount
of recoverable key bits. Finally, we present a figure that illustrates the effect
of faulting the masked Sbox on the native AES state bytes (that are observed
during key recovery).

Bitsliced 1st-Order Masked S-box. One shared S-box computation consists
of 688 instructions and is executed in parallel for the entire AES state. The
implementation is based on the efficient bitsliced, S-box implementation from
Boyar et al. [BP12]. Masking via Trichina gates [Tri03] as well as efficient
platform-specific scheduling was added by Schwabe and Stoffelen [SS16].

Susceptible Instructions. In this section, we demonstrate that SIFA is nei-
ther restricted to a specific fault model nor requiring precise information of the
attacked implementation. We have performed experiments using two common
fault models (single bitflip and byte-stuck-at-0) and simulated fault inductions
that cause an erroneous value in the result of the targeted instruction of an
S-box computation in round 9. This simulation is performed separately for each
of the 688 instructions in the masked S-box. For each instruction and both
types of simulated faults we performed 2 000 encryptions and collected correct
ciphertexts from unaffected encryptions (if there were any). Then we performed
key recovery, i.e., for each targeted instruction, both types of simulated faults,
and the corresponding set of collected ciphertexts we guessed 32 bits of the
last round key, calculated back to round 9 and checked if some bytes follow a
non-uniform distribution (using the SEI distinguisher). To reduce the runtime of
the evaluation we took one shortcut by always fixing 16-bit of the 32-bit partial
key guess to the correct value. While this significantly reduced the runtime of
our exhaustive analysis, it does not affect the results.

The results of our analysis are presented in Figure 8.11. Figure 8.11a shows
for each of the 688 instructions within the masked S-box whether or not single
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bitflips in this specific instruction allow an attacker to mount SIFA, i.e., recover
bits of the key. Note that black lines represent susceptible instructions while
white lines represent the other instructions. An instruction is not susceptible,
e.g., if a bitflip is never ineffective, always ineffective, or does not lead to a
non-uniform distribution that is distinguishable from uniform after observing
2 000 faulted encryptions. In total, 359 out of 688 (52%) of the instructions are
susceptible to single bitflips. In Figure 8.11b, we show the same analysis using
byte-stuck-at-0 faults instead. Here, 483 (70%) of the instructions are susceptible.
If we oppose these results with the fact that the masked linear layer in round 9
only consists of 290 instructions, it is fairly safe to say that finding a suitable
fault location should be easy in practice.
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(a) Bitflips: 359 (52%) of the S-box instruc-
tions are susceptible.
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(b) Byte-stuck-at-0: 483 (70%) of the S-box
instructions are susceptible.

Figure 8.11: Instructions in the masked S-box in round 9 that are susceptible to faults
and allow to mount SIFA.

Attack Performance for Various Fault Models. After determining that
large parts of the masked S-box implementation are susceptible to single fault
inductions in the previous section, we now discuss the effort of key recovery
when targeting one of these susceptible instructions. This time we consider 7
different fault models and the results are presented in Table 8.2. For each of
the 7 fault models we give the number of faulted encryptions, the number of
resulting ineffective fault inductions (i.e., correct ciphertexts), and the number of
key bits that can be recovered from those correct ciphertexts. Each experiment
was repeated 3 to 5 times, and the averaged values are presented. The relative
position of the affected bytes/bits within the targeted 32-bit register is not
important for the analysis.

From the results we can see that faults with fine granularity (only affecting
single bits) allow an attacker to recover key bits faster (= using less faulted
encryptions). However, only 32 key bits can be recovered in these scenarios
since only a small portion of the AES state is affected by those fault inductions.
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On the other side, faults that affect whole bytes/registers require more faulted
encryptions but cause a non-uniformity in bigger portions of the AES state.
Consequently, an attacker can recover more key bits.

Table 8.2: 32-bit STM32 F3: Attack evaluation when targeting one of the instructions
in the masked S-box in round 9. Each experiment was repeated 3 to 5
times, the resulting numbers were averaged.

Fault
Effect

# Ineffective
Faults

# Faulted
Encryptions

# Recoverable
Key Bits

Flip one bit 194 386 32
Set one bit to zero 214 428 32
Randomize one bit 574 763 32

Flip one byte 192 2 940 128
Set one byte to zero 192 3 129 128
Randomize one byte 602 1 808 128

Instruction skip 400 45 527 128

Non-Uniformity of AES State Bytes. Finally, we present more arguments
why the statistical nature of SIFA is crucial to mount the manifold attacks
presented in this work. If we take a look at Figure 8.12, we can see the distribution
of AES state bytes in round 9 using one byte-stuck-at-0 fault per encryption. For
this result we assumed a correct guess of round key 10, in an actual attack, the key
recovery has to be done by guessing 32-bit chunks of round key 10 at a time. Even
though our simulated faults are noise-free, i.e., they have the same effect on each
faulted instruction, there is no easy way (other than having precise knowledge of
the attacked implementation and the induced fault) for the attacker to predict
the resulting non-uniformity in the state bytes which would allow for faster key
recovery than in SIFA (or SFA). In fact, the observed distributions have some
relations with the pen-and-paper examples given in Section Section 8.1.2 and
can be expected to vary significantly depending on the attacked implementation,
the fault location, and the actual fault effect. This motivates our choice of simply
using a metric of non-uniformity to distinguish the key candidates.

8.3 Discussion

8.3.1 On the Nature and Number of Faults

In Section 8.1, we explored the behavior of masked building blocks using deter-
ministic stuck-at-0 faults or instruction skips. The reason for this is to make
the processes leading to a bias easier to understand. However, it is easy to see
that making the fault probabilistic, e.g., assuming a more realistic setup, where
an instruction skip does not work all the time, or that a bit is only set to 0
with a certain probability, just affects the bias an attacker observes and hence,
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(a) Correct key guess. (b) An incorrect key guess.

Figure 8.12: 1st-order masked, bitsliced AES with temporal redundancy.
Byte-stuck-at-0 fault model. Distribution of AES state bytes after S-box
in round 9 after collecting a sufficient amount of correct ciphertexts.
The whole 128-bit key can be recovered.

the amount of ciphertext the attacker has to collect, but the attack still works
(see Chapter 6 for more details).

Furthermore, clock glitches and setting values to zero are not an exhaustive
list of effects that a fault could have in order to make the attack work. For
instance, in Section 8.2.2 we show that attacks are possible even for random
faults and bitflips. All in all, the only requirement we have on the fault is that
it leads to a biased distribution of the native variable at a suitable place in the
primitive among the filtered encryptions. In general, a fault can have a more
complex nature than only the cases discussed in Section 8.1 or Section 8.2.2.
For instance, in software implementations of masked ciphers, a large number of
instructions are LOAD instructions from memory since all shares might not fit in
the registers. We have observed in experiments that skipping a LOAD can also
lead to biased S-box distributions, but having a quite complex effect depending
on previous calculations. However, the big benefit of SIFA is the fact that an
attacker does not have to know or model the effect of a fault.

This fact also comes into play when dealing with the location of a fault. The
examples for the location of the fault given in Section 8.1 just show one out of
many different locations, where a fault targeting the S-box leads to a biased
distribution that can be exploited in SFA or SIFA. In Section 8.2.2, we evaluated
the number of instructions that can be faulted and in turn, can be exploited in
an attack for one particular implementation. However, how many such locations
exist crucially depends on how the S-box is implemented. In a similar manner as
for the effect of a fault, an attacker does not have to know, or to aim for just
one specific instruction or location to fault. The only requirement for the attack
to work in practice is that the faulted location leads to a bias. All these points
make the attack to be executed in practice quite easily, even with a rather cheap
setup using clock glitches as demonstrated in Section 8.2.

The last point, we want to discuss regarding faults is the number of faults per
execution. We have opted for a single fault per execution, since inserting multiple
faults per execution is usually considered to be harder. This is probably related
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to the prominence of fault attack techniques where attacks requiring multiple
faults per execution have high requirements of the exact location and effects of
the induced faults. However, at least in the case of SFA, we are not interested
in the number of faults, since there are no strong requirements regarding effect
and location. In fact, injecting multiple consecutive faults usually just leads to
a lower number of necessary ciphertexts as the bias increases. For SIFA, the
situation is slightly different; however, multiple faults injected in the computation
of a single S-box might to reduce the required number of faulted encryptions,
while being not necessarily harder to conduct in practice.

8.3.2 Countermeasures

In the following, we discuss the effectivity and practicability of well-known
countermeasures against our attacks. Since most fault countermeasures prevent
the SFA variants of our attack using a single fault per execution, we focus on
the SIFA variants and show that it is not easy to prevent these attacks. In
fact, countermeasures such as detection even facilitate certain aspects of SIFA in
practice.

Self-Destruction. The most radical approach of destroying the device as soon
as a fault is detected is a valid countermeasure against any fault attack. However,
this technique has a few downsides and limitations, including false positives and
additional effort to reliably destroy a circuit.

A lot of cryptographic devices deployed in the field like smart cards and RFID
tags have to function and operate under rather tough conditions. They typically
have to deal with abrupt loss of power, for instance if a smart card is withdrawn
from the terminal while working. Furthermore, they have to handle power spikes
from electrostatic discharges or electromagnetic fields. Hence, deciding between
an active fault attack and interference due to normal usage is not a trivial task
and would potentially lead to detection of a huge amount of false positives that
render such an approach useless for a wide range of applications.

One way to compensate some false positives is to destruct a device only once
a certain amount of faults was detected. Such a fault counter could be considered
an effective countermeasure, yet is still not used by a large portion of embedded
devices, since it is challenging to implement appropriately tamper-resistant,
especially in hardware.

Correction. A different approach to make use of redundancy is to correct the
effect of a fault, for instance using error-correcting codes or simple majority
voting. However, correction-based countermeasures usually can be reduced to
the detection-based case using additional faults. How hard this is and which
requirements this might have on the precision of the fault crucially depends on
the implementation of the countermeasure. As an example let us assume a simple
majority voting between the result of 3 block cipher calls. To do this, the 3 block
cipher calls take the same inputs and hence, perform redundant computations.
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An attacker can now use an additional fault to just ensure that the computations
performed on one redundant block cipher call will always be incorrect. This
usually does not require a precise fault. This reduces the majority voting of 3
block cipher calls to a construction which essentially behaves as a detection-based
countermeasure (or infection-like countermeasure if the majority voting happens
at bit-level of the ciphertext). Then, an attacker can proceed with the same
attacks as before, using a second targeted fault.

Infection. In Chapter 6, the application of SIFA on an infective countermea-
sure [TBM14] has been demonstrated. The employed dummy rounds in this
countermeasure increase the needed number of faulted encryptions until the key
can be recovered. However, when aiming to prevent SIFA, dummy rounds that
do not infect the state in the case of a fault should provide even more protection.
Hence, we explore this countermeasure next.

Hiding. The goal of hiding countermeasures is to reduce the attacker’s knowl-
edge of what is currently computed, and thus effectively decrease his precision
when placing the fault. Examples include adding dummy rounds randomly
between the relevant rounds, or shuffling the order of execution, for example the
order in which the 16 AES S-boxes per round are executed. In the following,
we analyze the case of dummy AES rounds in more detail, and show that the
noise introduced this way quadratically increases the necessary number of faulty
encryptions for the analysis. We consider a protected AES implementation and
make the following assumptions for our model:

• The attacker needs to fault round 9 out of 10 (identical) AES rounds.

• The protected implementation executes 10 real AES rounds and (k− 1) · 10
ineffective dummy rounds in a uniformly random ordering, labeled 1, . . . , R
with R = 10k.

• The attacker targets round R− t. Three outcomes are possible:

1. Hit: It is the real round 9 with probability σ, resulting in a distribution
with ineffectivity rate πfault and ineffective distribution pfault.

2. Miss: It is a dummy round with ineffectivity rate πdummy = 1 and
uniform ineffective distribution θ

3. Miss: It is a real round, but not round 9, with ineffectivity rate πfault
and uniform ineffective distribution θ. For simplicity, we assume an
ineffectivity rate of πdummy = 1, so this case can be merged with Item 2.

With these assumptions, the success probability that round R− t of R is a hit
(signal) is

σfault[R, t] = P
[
Hit in round R− t

]
=
t ·
(
R−t−1

8

)(
R
10

) =
90 · t

R(R− 1)

9∏
s=2

[
1− t− 1

R− s

]
.
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Figure 8.13: Success probability σ[R, t] when targeting round R − t, for different
R = 10k. For the choice t = k (dashed line), σ[10k, k] ≈ 0.387

k
for k � 2.

This parametrized function is plotted in Figure 8.13 and attains its maximum
near t = k = R

10 . The resulting function σfault[10k, k] for the optimized success
probability is also plotted in Figure 8.13 (dashed, with x-axis t = k), and can be
approximated as

σfault[10k, k] = P
[
Hit in round 9k of 10k

]
=

90k

10k · (10k − 1)
·

9∏
s=2

[
1− k − 1

10k − s

]

=
1

k
·

9∏
s=1

9k − s+ 1

10k − s
k→∞−−−−→ 1

k
·
(

9

10

)9

≈ 1

k
· 0.387 for large k .

A SIFA attacker samples the resulting distribution ptotal among the ineffective
faults, with a total ineffectivity rate of πtotal and a signal of σtotal:

πtotal = σfault · πfault + (1− σfault) · 1 = 1− (1− πfault) · σfault

σtotal =
σfault · πfault

πtotal
ptotal(x) = σtotal · pfault(x) + (1− σtotal) · θ(x)

The necessary sample size to distinguish ptotal is inverse proportional to the
capacity

C(ptotal) = σ2
total · C(pfault) ,

which corresponds to a data complexity proportional to (πtotal ·σ2
total ·C(pfault))

−1.
Thus, for a fixed fault setup with pfault, πfault, increasing the dummy factor k
increases the data complexity of the attack quadratically (Figure 8.14):

(πtotal · σ2
total)

−1 =
1− (1− πfault) · σfault

σ2
fault · π2

fault

≈ k2 1

(0.387 · πfault)2
− k 1− πfault

0.387 · π2
fault

.
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Figure 8.14: Increasing data complexity with dummy factor k, for different πfault.

Shuffling. Similar to dummy rounds, shuffling operations reduces the attacker’s
precision and success probability in hitting the right S-box and thus induces noise
in the distribution. However, in the case of SIFA, there is an important difference
due to the ineffectivity rate in case of misses, which we assume is the same as in
case of hits. For this reason, the data complexity will also grow quadratically in
the number of shuffled operations in the relevant scope (e.g., 16 S-boxes), but
only linearly instead of quadratically in the inverse ineffectivity rate π−1

fault.

Limiting the Data Complexity. For our attacks to work, we usually need
several faulted encryptions per key to retrieve it. Therefore, methods that restrict
the usage of the key and hence, put a limit on the data complexity can be a
viable strategy for providing protection against this type of attack. Existing
re-keying strategies can be roughly split into two groups, one where the used key
is derived via a re-keying function from a static master key [Med+10; Dob+17;
Dob+15; Ber+17a] and the other group being methods where a secret internal
state is maintained and constantly updated. In the first group, the problem of
protection against the attack is basically shifted to the re-keying function and
has to be solved there.

8.3.3 Choice of the Target and Attack Setup

It is important to note that we have not chosen the S-boxes in Section 8.1 or AES
in Section 8.2 as targets of our attacks because we have found them to be weaker
than others. In fact, we chose them, because many masked implementations for
them are publicly available.

Furthermore, we performed the practical experiments using clock glitches
because the equipment is cheap and we do not have easy access to other, more
sophisticated equipment at the moment. Obviously, the attack is not limited to a
specific fault induction method; quite on the contrary, we expect other methods
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of inserting faults, such as lasers, needle probes, etc., to be far superior compared
to our cheap setup using clock glitches (cf. Chapter 7).

8.3.4 Further Applications

For the sake of simplicity, we have put the main focus of this chapter on the
application of statistical fault attacks for (masked) design strategies using bijective
S-boxes, where we want to distinguish a uniform from a non-uniform distribution.
However, this does not mean that the attack in only applicable on primitives
using bijective S-boxes. As discussed in Section 8.1.3, a fault attack may influence
only some transitions in the transition graph, while leaving others intact. In the
case of SIFA, an attacker can observe and exploit the “filtered” graph, where
most likely only the intact transitions remain. Note that in the masked case,
there is more than one transition from one input to one output value, due to
masks. Hence, an attacker can potentially exploit all cases where this “filtered”
transition graph shows a differently distributed occurrence of input and output
transitions.

As another narrative restriction, we have restricted our focus on block ciphers.
One potential countermeasure one could come up with against our attack is the
use of a PRF like the AES-PRF [MN17] instead of a block cipher. Such a PRF
prevents an attacker from observing ciphertexts and decrypting backwards under
guessing the key. However, SIFA remains possible by targeting the input of the
AES-PRF since here, a known input like a nonce is usually processed. In general,
the presented attacks are almost always applicable whenever some known input
is mixed with a secret, which covers most stateless symmetric cryptographic
primitives. However, it is an interesting future research topic to evaluate how
well such attacks will work.

8.4 Conclusion

In this chapter we have demonstrated that SIFA is a very powerful attack.
We show that state-of-the-art countermeasures against implementation attacks,
redundancy against faults and masking against side-channels, are not as effective
against SIFA as expected. In particular, SIFA is still possible using just a
single fault per execution, contradicting the common folklore that masking plus
a detection-based countermeasure provides sufficient protection against fault
attacks.

We have presented a comprehensive analysis of simulated faults for an
assembler-optimized, masked AES implementation for the 32-bit STM32 F3
platform that might be of high practical relevance. We show that most of the
instructions of the masked S-box implementation are “susceptible” to faults and
can be exploited in SIFA using any of the common fault models. Moreover, the
practical feasibility of the attack was shown by attacking a 10th-order masked
AES software implementation with arbitrary temporal redundancy on block
cipher level on a standard 8-bit microcontroller without specific security features
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using a cheap clock glitch setup. Even with such a cheap setup, we are able
to recover 32 bits of the key after collecting 20 ciphertexts where the fault is
ineffective, needing approximately a total of 1000 encryptions where a single fault
induction is performed.



9
Protecting against Statistical Ineffective

Fault Attacks

Masking and redundant computation are amongst the most popular algorithmic
countermeasures for cryptographic implementations against active and passive
attacks respectively. In masking one splits input and intermediate variables of
cryptographic computations into d+1 random shares such that the observation of
up to d shares does not reveal any information about their corresponding native
value. Redundant computation, on the other hand, is used to detect malicious
or environmental influences that could lead to faulty cipher outputs. Up until
recently, implementations combining masking with some kind of redundancy were
typically assumed to offer protection against both power analysis and fault attacks.
However, in Chapter 8, we have shown that statistical ineffective fault attacks
(SIFA) are applicable to ciphers protected with masking as well as fault detection
or infection. SIFA succeeds in doing this by exploiting the dependence of faults
propagating to the cipher output on the value of intermediate variables. The
mere presence of a fault and the non-faulty outputs of the cipher computations
provide sufficient information to retrieve the value of these intermediate variables.
Consequently, the exploration of countermeasures against SIFA that do not rely
on protocols or physical protection mechanisms is of great interest. In this
chapter, we explore different countermeasure strategies against SIFA.

Our Contribution. The contributions presented in this chapter are two-fold.
First, we analyze the general root causes that lead to successful SIFA attacks
in more detail. To study these causes and also describe resistance against SIFA
and Differential Power Analysis (DPA) [KJJ99], we introduce an abstraction
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layer between the algorithmic specification of a cipher and its implementation in
hardware or software. In this layer, we express the cipher as a circuit, taking as
input an array of variables and returning as output an array of variables. We
split this circuit into sub-circuits where each sub-circuit takes as input variables
that are either the cipher’s input or the other sub-circuit’s outputs. This is
done recursively until we get to the level of circuits that we no longer split into
sub-circuits and that we call basic circuits. In the implementation of these basic
circuits it is then essential to keep the computations and internal variables of the
different basic circuits separated. Thus, basic circuits are the natural place to
define the concept of faults and their effectiveness in an unambiguous way, and it
is also insightful to describe DPA resistance similar to the probing model [ISW03].

Second, we present two different approaches that, starting from the algorithmic
description, allow to specify circuits that mitigate SIFA and DPA. The first
approach relies on finding descriptions of ciphers that restrict basic circuits to
permutations which only operate on an incomplete set of shares. In particular,
those permutations are either linear or variants of the Toffoli gate [Tof80], the
simplest invertible nonlinear function. This strategy allows for fault detection at
the end of a cipher, e.g., by means of redundant computation and comparison
of the outputs. We then show that masked 3-bit, 4-bit, and 5-bit S-boxes can
be built using Toffoli gates as their only nonlinear component, thus offering
protection against SIFA. A similar strategy can be applied to the AES S-box;
however, for AES, we require fault detection at the output of the AES S-box.
We verified the correctness of the masking of our Toffoli-based circuits for S-boxes
of Keccak and AES using maskVerif, a tool for formal verification of masking
schemes [Bar+15].

The second approach does not restrict basic circuits to be permutations and
can thus be applied more broadly to add SIFA-protection to arbitrary circuits. It
works by adapting the error-detection circuit for more fine-grained detection and
can be generalized to cover multi-fault SIFA, albeit at a higher implementation
cost.

Related Work. Potential mitigations against SIFA are already discussed
in Chapter 8. One strategy considered there is to move from error detection to
error correction, such as a majority voting. This has the effect that more than
one fault is needed, since a single fault can always be corrected. This rough
concept is developed further and brought into practice by several papers [Bre+20;
Sah+19; SRM20].

The paper of Breier et al. [Bre+20] proposes a countermeasure based on
error-correcting codes that can be implemented with error-correcting hardware
gates. Shahmirzadi et al. [SRM20] investigate how error-correcting codes can
be correctly embedded in a cryptographic implementation and show that their
construction provides practical advantages over simple majority voting. Contrary
to the two papers mentioned before, the Transform-and-Encode framework by
Saha et al. [Sah+19] proposes an instantiation that combines masking with
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majority voting as an error-correcting code. Their strategy has the benefit that
the error correction is only applied at the output of the S-boxes.

In contrast to the above-mentioned countermeasures using error correction,
our strategy only requires error detection. We propose to either use masking
schemes based on the Toffoli gate or transform implementations of arbitrary
masking schemes. By doing this in combination with suitable error detection,
we ensure that the effect of a fault never depends on a native (unmasked) value.
In most cases, the detection of the error can be done once on the primitive
level (e.g., after one block cipher execution, or execution of a cryptographic
permutation). Hence, it even can be implemented in a time-redundant manner,
or as an encrypt-decrypt strategy. Therefore, we get an overhead of roughly
two, due to the additional redundancy in either space or time, compared to
implementation featuring only protection against passive side-channel attacks.
In contrast, the computational overhead of majority voting is at least three, with
more overhead for more sophisticated error correction strategies, as shown by
Shahmirzadi et al. [SRM20].

Ramezanpour et al. [RAD20] proposed a different way of achieving inde-
pendence of a fault effect from the native value. As an example, they give an
implementation based on a threshold implementation [NRR06; NRS11] of Can-
right’s AES S-box [Can05], where they introduce additional shares and additional
computations. This results in an overhead of a factor of 2 compared to a standard
threshold implementation in their FPGA implementation [RAD20]. Moreover,
if protection against differential fault attacks is also needed, then this cost will
increase further. In contrast to this, our scheme also works with masking based on
two shares and has a low overhead, allowing much more efficient implementations
in practice.

Another strategy that may protect against fault attacks, including SIFA,
are approaches based on actively secure multi-party computation protocols like
CAPA [Rep+18], as long as a fault does not affect all parties. However, such
methods are quite expensive. As pointed out by the authors of CAPA [Rep+18],
their implementations are to be considered as a proof-of-concept and are too
costly to be used in practice. For example, an implementation of the AES S-box
using three shares and one MAC key requires 156 bytes of randomness per S-box
evaluation.

Outline. We start with a description of our abstraction layer and discuss how
we model fault and side-channel attacks on it in Section 9.1. Then, we show
how to describe some ciphers only relying on incomplete permutations as basic
circuits in Section 9.2. Afterwards, we describe a circuit for the AES that can
withstand single-fault SIFA and first-order DPA in Section 9.3. Section 9.4 deals
with the protection of arbitrary circuits. In Section 9.5, we verify the correctness
of the circuits for the S-boxes of AES and Keccak using maskVerif and discuss
considerations when implementing the circuits in software or hardware.
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9.1 The Circuit Abstraction Layer and Fault
Model

In this section, and based on our description of SIFA (cf. Section 6.2.2) and mask-
ing (cf. Section 2.2.1), we define an abstract circuit model and the corresponding
fault model that we use as a tool for building hardware or software cipher im-
plementations that offer resistance against SIFA and side-channel attacks. One
major purpose of the circuit abstraction layer is that it allows us to define our
fault model in a clean and tidy way. In the following sections, we will make use
of the term cipher. By the term cipher, we mean block ciphers, tweakable block
ciphers, or cryptographic permutations.

9.1.1 Definition of the Circuit Abstraction Layer

We propose an abstraction layer between the algorithmic description of a (masked)
cipher or permutation and the hardware or software implementation and present
our formalism here. At the circuit abstraction level, we break up the deterministic
algorithmic description into a number of interconnected circuits.

By a circuit, we mean a fully specified deterministic function taking as
input an array of input variables and returning as output an array of output
variables. Trivially, the algorithm of a (masked) cipher itself defines a circuit.
More interestingly, we can break up that circuit into a number of interconnected
sub-circuits that take care of all the processing. The composite circuit that a
sub-circuit is part of is called its super-circuit. The variables of the super-circuit
and its sub-circuits are related in the following ways:

• Each input variable of a sub-circuit is either an input variable of its super-
circuit or the output variable of another sub-circuit.

• Variables in a super-circuit that are neither super-circuit input nor output
variables are called intermediate variables.

• We consider duplication a form of processing and hence, any super-circuit
input or intermediate variable propagates to at most one sub-circuit input
or to the super-circuit output.

This can be applied recursively, where every sub-circuit can at the same time be
a super-circuit with its own sub-circuits.

Let us illustrate this with an example: non-masked AES-128. Its circuit takes
as input a 128-bit key and a 128-bit plaintext and returns as output a 128-bit
ciphertext. Two obvious sub-circuits are the key schedule and the datapath. The
former has the 128-bit key as input and a 1408-bit expanded key as output. The
latter has the 128-bit plaintext and the expanded key as input and the 128-bit
ciphertext as output. The datapath circuit can be split in 11 sub-circuits: one
for each round and an initial round key addition circuit. The input of each
round sub-circuit is the output of another circuit and a round key taken from
the expanded key. The circuits for the first 9 rounds are identical, we say they
are 9 instances of the same circuit class. The round circuit class can be split into
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4 sub-circuits: SubBytes, ShiftRows, MixColumns and AddRoundKey. One may
merge ShiftRows with SubBytes or MixColumns when targeting implementations
where this step does not represent processing. A SubBytes circuit splits naturally
into 16 sub-circuits of the same class, representing the S-box.

In this chapter, we will use the following formalism to specify circuits. We
specify the input variables and their type, the output variables and their type
and how to compute the output variables from the input variables. Unless
stated otherwise, variables are binary. Circuits can be defined from scratch with
simple operations such as addition and multiplication of variables, or in terms
of sub-circuits. We call the former a basic circuit and the latter a composite
circuit. Circuit 9.1.a provides an example of a basic circuit with three binary
input variables and two binary output variables. A circuit can be used as a
sub-circuit in the specification of a composite circuit. An example of a composite
circuit with four binary input variables and two binary output variables is given
in Circuit 9.1.b. The composite circuit is specified by two sub-circuits where

(9.1.a) Basic circuit

Name: ExampleCircuit1

Input: (a, b, c)

a← b� c

b← c� a

Output: (a, b)

(9.1.b) Composite circuit

Name: ExampleCircuit2

Input: (a, b, c, d)

(a, b)← ExampleCircuit1(a, b, c)

(a, b)← ExampleCircuit1(d, a, b)

Output: (a, b)

the processing on the input variables is based on their location in the input
array. When naming intermediate variables, one can make use of the fact that
any variable shall be used exactly once. This implies that once a variable has
occurred as the input of a sub-circuit, its name becomes available for another
intermediate variable. In case we want to use a variable twice or more, we can
put a cloning circuit. This is a circuit cloning variable a to b: (a, b)← Clone(a),
or to a, b and c: (a, b, c)← Clone(a). In our convention, a composite circuit must
use all output variables of its sub-circuits as outputs. If one wishes to omit a
variable, this can be specified explicitly with a sinkhole circuit: Sinkhole(a) is a
simple circuit taking one variable and returning no variables.

We refer to circuits that have as many input variables as output variables
(and of the same type) as transformative circuits. For these circuits we have a
simplified convention. We specify them operating on a state which is used for
both input and output. When they are used in the specification of a composite
circuit, we omit the arrow and output variable.

At the circuit abstraction level, we see computation as the application of a
particular input at the circuit’s input and the observation of the result at its
output. Furthermore, such circuits can be injective, surjective, both or neither.

Definition 1. A circuit (class) is injective if for every input it returns a different
output. It is surjective if for all outputs there is at least one input. We call a
circuit (class) that is both injective and surjective a permutation circuit (class).
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Clearly, a permutation circuit can be modeled as a transformative circuit.

9.1.2 Fault Model

We model faults at the level of a circuit during computation. In the absence of
faults, the output of a circuit of a given class is fully determined by its input. A
circuit fault is simply any deviation from this.

Definition 2. A circuit fault during a computation is a deviation of the circuit
instance from its circuit class. Namely, the fault modifies the circuit in such a
way that it could return for at least one input an output that does not correspond
with the one prescribed by the circuit class.

This definition covers a wide range of faults, including bit flips, or set-to-0 or
set-to-1 faults of input, output, or intermediate variables, but also modifications
of entries in lookup tables. Circuit faults are abstract and the mapping to physical
faults that occur in actual implementations is often non-trivial. The hardware
implementation of a cipher circuit that has many sub-circuit instances of the
same class may re-use the same combinatorial hardware for all those instances.
A permanent fault in such a hardware would correspond to a circuit fault in
all circuit instances that it is used to implement. Similarly, a faulted entry in
the AES S-box lookup table implies circuit faults in all S-box circuits of the
AES circuit. Although faults often occur in implementations of circuit classes,
at circuit abstraction level we see circuit faults in circuit instances. This is more
general as faults may be induced for single executions of a program sequence or
combinatorial circuit, or different faults may be induced for different instances.

A circuit fault does not necessarily imply a faulty circuit output. For example,
a single faulted entry in an AES lookup table only leads to a faulty circuit output
if the circuit input hits that entry. A stuck-at-0 fault affecting an input variable
is not visible at the output if the variable is 0 anyway. For this reason, we define
the concept of fault effectiveness.

Definition 3. A circuit fault is effective during a computation if it leads to a
faulty circuit output.

When protection against faults is a concern, one typically performs redundant
computations. At circuit level, this can be done by feeding it with variables that
satisfy some conditions. In duplication, this can be done by two circuits of the
same class that operate on input variable arrays set to the same value. In the
absence of faults, this will also be the case for the outputs. Another possibility
is a single circuit where the input variables satisfy some linear relation and in
the absence of a fault, the output variables will satisfy the same. These circuits
propagate a kind of redundancy condition that, if not satisfied, implies a fault
must have occurred. Detection of faults can be done with a circuit as well. We
call this a fault detection circuit. It (typically) simply propagates the input
variables unchanged to the output but has an additional binary output, called
fault alert, which is false when the redundancy condition is satisfied and true
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otherwise. This fault detection circuit may opt to use only the output variables
of the cipher circuit, or it may use duplicates of intermediate variables as well.

9.1.3 Masking in Circuits

We speak of a masked circuit when it corresponds to a masked cipher. It operates
on share variables and preserves the property that learning d shares does not give
information on native variables. In a similar way as the probing model [ISW03],
we model side-channel attacks by allowing an attacker to probe all associated
variables and to observe all computations of certain sub-circuits. The observation
of a single sub-circuit does not give information about native variables only if
the sub-circuit is incomplete.

Definition 4. A sub-circuit in a masked circuit is incomplete if the input variables
do not include all shares of a single native variable.

For linear functions, such a partition into incomplete sub-circuits can be done
quite easily as shown in Circuit 9.2.a. However, if we just consider one Boolean

(9.2.a)

Name: SharedXor

State: (a0, a1, b0, b1)

XorFirst(a0, b0)

XorFirst(a1, b1)

(9.2.b)

Name: XorFirst

State: (a, b)

a← a� b

And, such a partition into incomplete sub-circuits is more complex. Hence, many
papers dealing with masking aim to find efficient masked implementations for
the Boolean And [ISW03; Bel+17; Rep+15a; Cnu+16; GIB18; GM17; GMK16;
Bar+17].

If we just focus on the sharing of an And, c = a � b, using 2 shares, such
a sharing requires the addition of a resharing variable r. This is needed to
ensure that the shares c0 and c1 are each independent of the native value of c.
The resharing variable r is a circuit input. It may be derived from a dedicated
random number generator or from another unrelated calculation, e.g., as shown
in Changing of the Guards [Dae17]. A possible partition of masked And into
incomplete sub-circuits is then given in Circuit 9.3.a. This definition requires a
lot of cloning. We can alternatively use sinkholes as in Circuit 9.3.b.

9.1.4 SIFA on Masked Circuits

Implementing a masked cipher based on a circuit with incomplete sub-circuits
and with fault countermeasures such as duplication at cipher level with a fault
detection circuit at the end of the cipher circuit is not sufficient to prevent SIFA.
In this section we explain why. We assume a SIFA attacker that can make many
computations but is limited to a circuit fault in a single sub-circuit (including
fault detection circuits) during each computation. The success of this attack



9.1. The Circuit Abstraction Layer and Fault Model 138

(9.3.a) With cloning

Name: SharedAnd

Input: (a0, a1, b0, b1,r)

(r,r′)← Clone(r)

(a0, a
′
0)← Clone(a0)

(a1, a
′
1)← Clone(a1)

(b0, b
′
0)← Clone(b0)

(b1, b
′
1)← Clone(b1)

(c0)← AndXor(a0, b1,r)

(c0)← AndXor(a′0, b0, c0)

(c1)← AndXor(a1, b
′
0,r
′)

(c1)← AndXor(a′1, b
′
1, c1)

Output: (c0, c1)

Name: AndXor

Input: (a, b, c)

d← a� b

c← d� c

Output: (c)

(9.3.b) With sinkholes

Name: SharedAnd

Input: (a0, a1, b0, b1,r)

(c0,r)← Clone(r)

AndXor1(a0, b1, c0)

AndXor1(a0, b0, c0)

(c1,r)← Clone(r)

AndXor1(a1, b0, c1)

AndXor1(a1, b1, c1)

Sinkhole(r, a0, a1, b0, b1)

Output: (c0, c1)

Name: AndXor1

State: (a, b, c)

d← a� b

c← d� c

relies on whether the behavior of the fault alert of a detection circuit depends on
native variables.

To see that this is still possible in the presence of only incomplete sub-circuits,
we give an example. Consider the single masked And gate with 2 shares (cf.
Circuit 9.3.b). We see that every input share is an input to two AndXor circuits
and is combined with share 0 of a native variable in one of them and share 1 in
the other. For instance, faulting a0 to a0 � 1 at the input of AndXor1(a0, b1, c0)
propagates to a0 in AndXor1(a0, b0, c0). It will flip c0 in AndXor1(a0, b1, c0)
iff b1 = 1 and c0 in AndXor1(a0, b0, c0) iff b0 = 1. The result is that it will flip
c0 an odd number of times iff b0 � b1 = b = 1. Hence it will propagate to c0 and
hence also the native variable c if b = 1 and not if b = 0. Resistance against SIFA
requires us to construct circuits that ensure that the propagation of circuit faults
in sub-circuits to the cipher circuit output is independent of native variables.

One condition that we use to achieve this is that each sub-circuit is incomplete.
If a circuit is not incomplete, faulting such a sub-circuit might have fault effects
that depend on native values. Second, we have to ensure that the circuit is built
in such a way that the propagation of the fault effect does not lead to ineffective
faults depending on native values. We have essentially two options to achieve
this:

1. Build circuits of incomplete sub-circuits where an effective fault at the
output of a single sub-circuit can never become ineffective at the output of
the cipher circuit (Section 9.2).

2. Build a fault detection circuit that catches effective faults at the output of
sub-circuits before they can become ineffective (Section 9.4).

Although a cipher circuit can be built from sub-circuits in a recursive way
with multiple layers, in the remainder we will consider only a single level of
sub-circuits. We will call these sub-circuits basic circuits. We then consider a
single fault per execution of a cipher as a circuit fault in a single basic circuit
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instance. Furthermore, in a first-order side-channel attack (e.g., first-order DPA),
we allow an attacker to observe a single basic circuit instance. This means that
an attacker has knowledge about all variables associated to this basic circuit and
the computation done within it.

9.1.5 On Detection Circuits

We consider detection circuits to be part of our circuit and hence, they can
also be a target in fault attacks. Thus, in general, detection circuits are also
incomplete, meaning that they have to operate on an incomplete set of shares. A
simple solution to ensure this is to duplicate shares at the input of the cipher
and to do the redundant computations on each set of shares. Then, detection
circuits can check the consistency directly on duplicated shares.

In the next sections, we also present strategies protecting against single
fault SIFA that only require fault detection on native values. This means that
redundant computations do not have to be performed on duplicated sets of
shares. Instead, only the native input values to a cipher can be duplicated and
different randomness can be used to share the duplicated native values. However,
when checking native values for faults, care has to be taken. If detection circuits
operate on native values, faults on these circuits may leak parts of the native
values. This is not a problem if these native values are not secret, e.g., when
detection circuits operate on the ciphertext output of a cipher. However, if the
compared native values have to be kept secret, care has to be taken that the
shares representing the native value are never combined within this circuit. In
addition, the detection circuits have to be placed in a manner so that faults on
them do not reveal the native values.

9.2 Ciphers from Incomplete Permutation Cir-
cuits

In this section, we investigate how we can implement ciphers so that they are
protected against single-fault SIFA. The heart of our strategy is to split a cipher
into basic circuits that are permutations and that are incomplete. To do this, we
use constructions common in the field of reversible computing [Lan61; Ben73;
Tof80]. In particular, we use the Toffoli gate [Tof80] and related constructions as
essential basic circuits.

9.2.1 The High-level Strategy

In this section, we aim to implement strategy 1 of Section 9.1.4. We do this by
building a cipher circuit out of incomplete permutation basic circuits.

In this way, any single circuit fault in a basic circuit that is effective for that
basic circuit is also effective for the cipher circuit. This follows from the following
lemma and corollary.
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Lemma 1. Any composite circuit built from permutation sub-circuits is itself a
permutation circuit.

Proof. The circuit has at least one sub-circuit A with all its input variables also
input variables of its super-circuit. Now write the super-circuit as the serial
composition of two circuits:

• The first circuit applies A to the input variables and returns the corre-
sponding output variables. The remaining variables are just copied from
input to output.

• The second circuit is the super-circuit with the circuit A replaced by the
identity.

The first circuit is a permutation as A is a permutation. We can iteratively apply
this trick to the second circuit until it only contains a single sub-circuit. In this
way we write the super-circuit as a series of invertible circuits.

Corollary 1. In a composite circuit built from permutation sub-circuits, any
fault at the output of a sub-circuit will propagate to the output of the super-circuit.

Proof. We can use the decomposition in circuits in the proof of Lemma 1 to split
the super-circuit in two permutation circuits where the faulty output variables of
a sub-circuit are input variables to one of the two permutation circuits. Therefore,
the fault will propagate to the output.

Thanks to Corollary 1, we can limit fault detection to the cipher’s output.

Corollary 2. Assume we have a composite circuit built from redundant incom-
plete permutation basic circuits. Further, assume that redundant circuits are
implemented so that they do not influence each other. In addition, the redundant
output shares are checked with the help of incomplete detection circuits. Then,
the resulting composite circuit withstands single fault SIFA.

A single fault can always only target a single incomplete basic circuit. This
fault can be effective at the output of the targeted incomplete basic circuit or
not. However, since the basic circuit is incomplete, the effectiveness of a fault
never depends on a native value. In the case that the fault shows an effect,
Corollary 1 ensures that the fault propagates through the circuit and is detected
at the output by incomplete detection circuits. Also from this event, an attacker
cannot infer any information, since it is also independent of native values. Thus,
the effectiveness of a fault is independent of native values and hence, cannot be
exploited by SIFA.

If we want to protect (tweakable) block ciphers, also the (tweak) key-schedule
has to be a permutation (which it typically is), that is split in incomplete
permutation basic circuits. In this case, we consider the last round-key and last
tweak together with the ciphertext as output of the cipher that has to be checked
for faults.
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Typically, a cipher consists of a sequence of rounds and the round function
has a linear and a nonlinear layer. We consider only ciphers where both layers
are permutations.

For the linear layer, a split in incomplete permutation basic circuits is straight-
forward. In particular, a linear function y = f(x) can be split in d+ 1 incomplete
basic circuits that each operate on a single share of the native state variables.
If f is a permutation, then so are the basic circuits computing yi = f(xi).
Furthermore, a single fault always causes a change in the native value of y.

For the nonlinear layer sub-circuit, a split in incomplete permutation sub-
circuits is less trivial. Typically, the nonlinear layer consists of the parallel
application of a nonlinear S-box to subsets of the state variables. Hence the
challenge is to build a circuit for the masked S-box in terms of incomplete
permutation basic circuits.

We do this by constructing masked S-box circuits that are permutations
using basic circuits of the inherently bijective Toffoli gate (cf. Section 9.2.2) and
variants. We follow a two-stage approach: first express the (unmasked) S-box in
terms of Toffoli gates and then build a circuit of the masked Toffoli gate using
incomplete Toffoli-gate basic circuits.

As a consequence of our design strategy, we end up with a round function
circuit where each basic circuit is incomplete and a permutation on the shared
state. This implies that it preserves uniformity of the sharing and hence, no fresh
randomness is required during the rounds for realizing first-order DPA secure
circuits.

9.2.2 Incomplete Permutation Basic Circuits

In the following, we present our permutation basic circuits that we will use to
realize circuits for S-boxes. In essence, we need three different basic circuits.
The first one is the Toffoli gate [Tof80], a nonlinear 3-bit permutation. We
denote it by pT (a, b, c) and define it in Circuit 9.4.a. For brevity in our S-box
constructions, we also define a permutation pχ(a, b, c) in Circuit 9.4.b that is a
close variant of it. In addition, we need the basic circuit XorFirst(a, b) from
Circuit 9.2.b to realize some S-boxes. In the first step, we build circuits out

(9.4.a) Toffoli gate

Name: pT

State: {a, b, c}
t← b� c

a← a� t

(9.4.b)

Name: pχ

State: {a, b, c}

t← b� c

a← a� t

of these basic circuits. Those circuits are masked versions of the basic circuits
and will be used as building blocks for the S-boxes. First, let us have a look
at a circuit for the 2-share masked Toffoli gate shown in Circuit 9.5.a, that we
will refer to as pTS(a0, a1, b0, b1, c0, c1). As can be seen in Circuit 9.5.a, all pT
sub-circuit instances are incomplete. Thanks to the fact that the basic circuits are
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(9.5.a) Masked Toffoli gate

Name: pTS

State: {a0, a1, b0, b1, c0, c1}
pT (a0, b0, c1)

pT (a0, b0, c0)

pT (a1, b1, c1)

pT (a1, b1, c0)

(9.5.b)

Name: pχS

State: {a0, a1, b0, b1, c0, c1}
pχ(a0, b0, c1)

pχ(a0, b0, c0)

pT (a1, b1, c1)

pT (a1, b1, c0)

permutations on the state, any circuit fault in a single pT sub-circuit instance that
is effective at its output will also be effective at the output of the super-circuit.
Moreover, any effective fault due to a single sub-circuit fault can at most affect
a single share per variable, and will hence result in a faulty native variable at
that point. Thanks to the correctness of sharing, this fault will propagate to the
super-circuit output. These observations are also true for the masked version
pχS of pχ (Circuit 9.5.b).

Next, we will show how to build circuits of two-share masked S-boxes using
the basic circuits introduced here. For the sake of completeness, we note that
the same properties can be achieved in a similar form for three-share threshold
implementation as shown in Circuit 9.6.a. The algorithmic representation fulfills
the three requirements for threshold implementations (TI):

1. Correctness, since the gate correctly implements the equations a = a� b� c
which can be checked be adding all output shares of a (the equations b = b
and c = c are trivial).

2. Uniformity, which follows from the fact that for each output share a single
share of a appears in additive form.

3. Non-completeness, because for each calculation of one output share, one
share index never appears (e.g., the calculation of the output share a0 does
not use any shares with the index 1 like b1 or c1).

The threshold implementation of pχT follows analogously.

9.2.3 3-bit S-boxes

Recently, 3-bit S-boxes have become more prominent with their usage in PRINT-
cipher [Knu+10], LowMC [Alb+15], or Xoodoo [Dae+18]. As a representative
of these S-boxes, we focus on the protection of the 3-bit χ-layer [Dae95; Dae+18].
The mapping χ operates on circular arrays of bits and it complements all bits
that have the pattern 01 in the bits at their right. χ is bijective if and only if
the length of the circular array is odd. The χ mapping in the round function of
ciphers typically operates on a large set of short odd-length sub-arrays of the
state in parallel. We will refer to n-bit χ as χn.

Daemen et al. [Dae+18] pointed out that it is possible to compute χ3 in-place
in its registers as a sequence of three Toffoli gates. This immediately yields a
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(9.6.a) Algorithmic representation of masked Toffoli gate (pTT ) using 3 shares

Name: pTT

State: {a0, a1, a2, b0, b1, b2, c0, c1, c2}
pT (a0, b0, c0)

pT (a0, b0, c2)

pT (a0, b2, c0)

pT (a1, b1, c1)

pT (a1, b1, c0)

pT (a1, b0, c1)

pT (a2, b2, c2)

pT (a2, b2, c1)

pT (a2, b1, c2)

circuit for two-share masked χ3 in terms of permutation sub-circuits:

Name: Masked chi3

State: {a0, a1, b0, b1, c0, c1}
pχS(a0, a1, b0, b1, c0, c1)

pχS(b0, b1, c0, c1, a0, a1)

pχS(c0, c1, a0, a1, b0, b1)

Recall from Section 9.2.2 that pχS is just a composite circuit and that its basic
circuits are pT or pχ. Still, a fault effect stemming from a single basic circuit
shows an effect in the native values at the S-box output.

9.2.4 4-bit S-boxes

The construction and design of 4-bit S-boxes has been intensively studied in
literature.

Using affine equivalence, De Cannière [De 07] partitions all 4-bit bijective
S-boxes in 302 equivalence classes, where 1 class contains all affine functions,
6 classes contain quadratic functions, and 295 classes represent the cubic func-
tions [Bil+15].

As shown by Bilgin et al. [Bil+15], 144 cubic classes can be constructed
by iterating the S-boxes of the quadratic classes separated by affine layers up
to 3 times. This covers many prominent S-boxes, e.g., the S-boxes used in
Noekeon [Dae+00] and Present [Bog+07], but also several of the 16 S-boxes
observed to be “optimal” by Leander and Poschmann [LP07]. We focus on the
6 classes of quadratic functions. The variables a, b, c, and d indicate the input
and output bits of the S-box, where a is the most significant bit. The operations
needed to compute the 6 quadratic classes are summarized in Table 9.1.
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Table 9.1: The 6 classes of quadratic 4-bit S-boxes [Bil+15] expressed in terms of pT
and pχ.

0123456789ABDCFE 0123456789CDEFAB 0123457689CDEFBA

Name: Q4
4

State: {a, b, c, d}
pT (d, a, b)

Name: Q4
12

State: {a, b, c, d}
pT (b, a, c)

pT (c, a, b)

Name: Q4
293

State: {a, b, c, d}
pT (d, b, c)

pT (b, a, c)

pT (c, a, b)

0123456789BAEFDC 012345678ACEB9FD 0123458967CDEFAB

Name: Q4
294

State: {a, b, c, d}
pT (c, a, b)

pT (d, a, b)

pT (d, a, c)

Name: Q4
299

State: {a, b, c, d}
pT (b, a, c)

pT (c, a, b)

pT (b, a, c)

pT (c, a, d)

pT (d, a, c)

Name: Q4
300

State: {a, b, c, d}
XorFirst(b, a)

XorFirst(c, a)

pT (a, b, c)

pT (b, a, c)

pχ(c, b, a)

Using Table 9.1, Circuit 9.5.a, and Circuit 9.5.b, it is straightforward to
build circuits for two-share masked versions for 144 out of the 295 cubic classes
of S-boxes [Bil+15] from incomplete permutation basic circuits. For S-boxes
which are not in these classes, we refer to results regarding the implementation
of 4-bit permutations using reversible components. For instance, Golubitsky
and Maslov [GM12] give optimal implementations (with respect to a certain set
of reversible gates) for all 4-bit permutations using at most 15 reversible gates.
However, note that the set of reversible gates used may differ from the basic
circuits pT and pχ used in this section and hence, we consider the exploration of
this as future work.

9.2.5 5-bit S-boxes

Shende et. al [She+03] show that every permutation (S-box) with an odd number
of inputs can be implemented using reversible gates by using at most one addi-
tional variable. However, as we will see next, the need for this additional variable
forces us to deviate from the strategy that each basic circuit is a permutation. In
particular, we will make use of Sinkhole(r) and (r1, r0)← Clone(r0) introduced
in Section 9.1.1.

In this work, we only focus on the 5-bit S-box χ5, which has several promi-
nent uses. For instance, it is used in the Keccak-p permutations inside
Ketje [Ber+b], Keyak [Ber+c], Kravatte [Ber+17b], and Keccak [Ber+11c]
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(SHA-3). Moreover, χ5 is also the core of Ascon’s S-box [Dob+]. We base our
circuit for two-share masked χ5 on an implementation of χ5 [Dob+] with input
bits a, b, c, d, and e and an intermediate variable r, as shown in Circuit 9.7.a.
To provide an implementation of χ5 that withstands single-fault SIFA, we again

(9.7.a) χ5

Name: χ5

State: {a, b, c, d, e}
(r)← AndNot(a, e)

pχ(a, b, c)

pχ(c, d, e)

pχ(e, a, b)

pχ(b, c, d)

XorFirst(d, r)

Sinkhole(r)

Name: AndNot

Input: (b, c)

a← b� c

Output: (a)

rely on pχS(a0, a1, b0, b1, c0, c1) as a building block. We introduce additional
input variables r0 and r1, which have to be initialized with random values such
that r0 � r1 = 0. This allows us to argue the security of the following scheme
in Circuit 9.8.a. We end up with a construction which is the repeated applica-

(9.8.a) Masked χ5 with constraints

Name: Masked chi5 v1

Input: {a0, a1, b0, b1, c0, c1, d0, d1, e0, e1, r0, r1}
pχS(r0, r1, e0, e1, a0, a1)

pχS(a0, a1, b0, b1, c0, c1)

pχS(c0, c1, d0, d1, e0, e1)

pχS(e0, e1, a0, a1, b0, b1)

pχS(b0, b1, c0, c1, d0, d1)

XorFirst(d0, r0)

XorFirst(d1, r1)

Sinkhole(r0, r1)

Output: {a0, a1, b0, b1, c0, c1, d0, d1, e0, e1}

(9.8.b) Masked χ5 with cloning

Name: Masked chi5 v2

State: {a0, a1, b0, b1, c0, c1, d0, d1, e0, e1, r0}
(r1, r0)← Clone(r0)

pχS(r0, r1, e0, e1, a0, a1)

pχS(a0, a1, b0, b1, c0, c1)

pχS(c0, c1, d0, d1, e0, e1)

pχS(e0, e1, a0, a1, b0, b1)

pχS(b0, b1, c0, c1, d0, d1)

XorFirst(d0, r0)

XorFirst(d1, r1)

Sinkhole(r1)

tion of permutation pχS on 12 bits of the state a0 to r1. Due to this iterative
construction, a fault that has an effect on any native output variable of one pχS
would have an effect on the native output variables of the whole circuit if r0

and r1 would be part of the output. However, r0 and r1 end in Sinkhole(r0, r1).
Hence, we have to show that this never leads to an effect of a fault disappearing.

As can be seen in Circuit 9.8.a, d0 and d1 are only written in the basic circuits
XorFirst(d0, r0) and XorFirst(d1, r1). Furthermore, the calculation of r0 and
r1 is independent of d0 or d1. As a consequence, a fault in a single basic circuit
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that happens before the execution of XorFirst(d0, r0) and XorFirst(d1, r1) can
never have an effect on the shares of d and r at the same time. Hence, the basic
circuits XorFirst(d0, r0) and XorFirst(d1, r1) never cancel the effect of a fault
on a single basic circuit, and effects of faults on the native value of r carry over
to d.

In a similar spirit as Sugawara for AES [Sug19], it is possible to use one share
r0 of the output of one S-box layer as input to the next layer of S-boxes. Hence,
it is possible to implement ciphers which use the sharing shown in Circuit 9.8.b
without the need for additional randomness, except the one needed for the
initial sharing and for the first S-box layer. We have verified exhaustively
that Circuit 9.8.b is a permutation on the bits a0, a1, b0, b1, c0, c1, d0, d1, e0, e1,
and r0 and that the masking is indeed correct using maskVerif (cf. Section 9.5.1).

9.3 AES S-box from Incomplete Permutation
Basic Circuits

So far, the main focus has been on S-boxes that have a rather simple and compact
description over F2. However, there exist S-boxes with complex descriptions over
F2, but more concise descriptions over larger binary fields, i.e., F2n . Hence, we
will apply our method to the representation of the S-box over F2n . The most
prominent example that falls into this category is the S-box of AES [DR02].
Building on Canright’s description [Can05], we can derive a description that is
better suited for our proposed countermeasure.

Figure 9.1 shows Canright’s description of the AES S-box just using reversible
computations, basically transforming the idea of Sugawara [Sug19, Figure 8]
from 3-shared to 2-shared masking. This can be done by replacing all F2n

multiplications in Canright’s description by Toffoli gates operating in F2n using
an additional input that is set to 0. To distinguish it from the binary Toffoli
gate defined in Section 9.2.2, we denote a Toffoli gate over F2n by pnT (a, b, c) with
a, b, c ∈ F2n . In the following, we denote multiplication and addition over F2n by
· and +, respectively:

Name: pnT

State: {a, b, c}
a← a+ b · c

We can also define a masked version of the Toffoli gate over F2n in a similar way
as in Circuit 9.5.a. Here, a0, b0, c0, a1, b1, c1 ∈ F2n denote the shares of a, b, c and
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Linear Map

GF(24) Mult.

GF(22) Mult.

GF(22) Inv.
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Figure 9.1: Description of the AES S-box (y = S(x)) relying on invertible computa-
tions.

the shared version of pnT is denoted by pnTS(a0, a1, b0, b1, c0, c1):

Name: pnTS

State: {a0, a1, b0, b1, c0, c1}
pnT (a0, b0, c1)

pnT (a0, b0, c0)

pnT (a1, b1, c1)

pnT (a1, b1, c0)

The arguments for the security and fault propagation of pTS are analogous to
Section 9.2.2. Again, each pnT is incomplete and hence, the effect stemming from
faulting a single instance can never depend on a native value. Furthermore, each
fault effect caused by a fault on a single instance of pnT is then visible in the
native value. Since only the shares of a are updated dependent on the shares of
b and the shares of c, a change in a native value at any point caused by a fault
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on a single instance of pnT can never become ineffective and hence, is visible at
the output of pnTS .

We will now use pnTS to build a circuit for the 2-share masked AES S-box. If
we take a look at the building block given in Figure 9.1, the multiplications in
F2n (later encapsulated in pnT ) are the only nonlinear components of the S-box.
The square scaling over F2n (snsc(a, b, c)) is a linear reversible operation, the
linear maps (Γ(a) and Ξ(a)) are linear permutations, the addition of the constant
(AddConstant(a)) is an affine operation, and the inversion (Inv(a)) over F22

corresponds to a simple bit-swap. We will construct the S-box with the help
of these basic circuits: Γ, AddConstant, Inv, pnT , snsc, and Ξ with the following
description. With superscripts H and L, we denote the higher half of coefficients
and the lower half of the coefficients, respectively:

Name: Γ
State: {x}

x7
x6
x5
x4
x3
x2
x1
x0


←



1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1


·



x7
x6
x5
x4
x3
x2
x1
x0



Name: Ξ
State: {x}

x7
x6
x5
x4
x3
x2
x1
x0


←



0 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 0 1 0


·



x7
x6
x5
x4
x3
x2
x1
x0


Name: s4sc
State: {a, b, c}
t0 ← b� c
a← a� ((t00 � t20)‖(t30 � t10)‖(t00 � t10)‖t00)

Name: s2sc
State: {a, b, c}
t0 ← b� c
a← a� (t10‖(t00 � t10))

Name: Inv
State: {a}
a← a0‖a1

Name: AddConstant
State: {a}
a← a� 0x63

Multiplication c← a · b in GF(22)
c1 ← ((a1 � a0) � (b1 � b0)) � (a1 � b1)
c0 ← ((a1 � a0) � (b1 � b0)) � (a0 � b0)

Multiplication c← a · b in GF(24)
t0 ← (aH � aL) · (bH � bL)
t1 ← t00‖(t00 � t10)
cH ← t1 � (aH · bH)
cL ← t1 � (aL · bL)

Having discussed all necessary building blocks, we are ready to give our shared
implementation of the AES S-box. In the description (Circuit 9.9.a) of the
AES S-box, we use variables in different fields: x0, x1, d0, d1, e0, e1, y0, y1 ∈ F28 ,
a0, a1, c0, c1, f0, f1, h0, h1 ∈ F24 , and b0, b1, g0, g1 ∈ F22 . Furthermore, we require
that a0 + a1 = 0, b0 + b1 = 0, c0 + c1 = 0, d0 + d1 = 0 to correctly compute the
AES S-box y0 + y1 = S(x0 + x1). As can be seen in Circuit 9.9.a, each of the
basic circuits is incomplete and hence, the effect stemming from faulting a single
instance is independent of native values. Next, we have to show that the effect of
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(9.9.a) Masked AES S-box with con-
straints a0 + a1 = b0 + b1 =
c0 + c1 = d0 + d1 = 0

Name: Masked AES v1

Input: {x0, x1, a0, a1, b0, b1, c0, c1, d0, d1}
Γ(x0)

Γ(x1)

p4TS(a0, a1, x
H
0 , x

H
1 , x

L
0 , x

L
1 )

s4sc(a0, x
H
0 , x

L
0 )

s4sc(a1, x
H
1 , x

L
1 )

p2TS(b0, b1, a
H
0 , a

H
1 , a

L
0 , a

L
1 )

s2sc(b0, a
H
0 , a

L
0 )

s2sc(b1, a
H
1 , a

L
1 )

Inv(b0)

Inv(b1)

p2TS(cH0 , c
H
1 , a

L
0 , a

L
1 , b0, b1)

p2TS(cL0 , c
L
1 , a

H
0 , a

H
1 , b0, b1)

p4TS(dH0 , d
H
1 , x

L
0 , x

L
1 , c0, c1)

p4TS(dL0 , d
L
1 , x

H
0 , x

H
1 , c0, c1)

Ξ(d0)

Ξ(d1)

AddConstant(d0)

e0 ← x0, e1 ← x1, f0 ← a0, f1 ← a1

g0 ← b0, g1 ← b1, h0 ← c0, h1 ← c1

y0 ← d0, y1 ← d1

Output: {e0, e1, f0, f1, g0, g1, h0, h1, y0, y1}

(9.9.b) Masked AES S-box with cloning

Name: Masked AES v2

Input: {x0, x1, a0, b0, c0, d0}
(a1, a0)← Clone(a0)

(b1, b0)← Clone(b0)

(c1, c0)← Clone(c0)

(d1, d0)← Clone(d0)

Γ(x0)

Γ(x1)

p4TS(a0, a1, x
H
0 , x

H
1 , x

L
0 , x

L
1 )

s4sc(a0, x
H
0 , x

L
0 )

s4sc(a1, x
H
1 , x

L
1 )

p2TS(b0, b1, a
H
0 , a

H
1 , a

L
0 , a

L
1 )

s2sc(b0, a
H
0 , a

L
0 )

s2sc(b1, a
H
1 , a

L
1 )

Inv(b0)

Inv(b1)

p2TS(cH0 , c
H
1 , a

L
0 , a

L
1 , b0, b1)

p2TS(cL0 , c
L
1 , a

H
0 , a

H
1 , b0, b1)

p4TS(dH0 , d
H
1 , x

L
0 , x

L
1 , c0, c1)

p4TS(dL0 , d
L
1 , x

H
0 , x

H
1 , c0, c1)

Ξ(d0)

Ξ(d1)

AddConstant(d0)

e0 ← x0, e1 ← x1, f0 ← a0, f1 ← a1

g0 ← b0, g1 ← b1, h0 ← c0, h1 ← c1

y0 ← d0, y1 ← d1

Sinkhole(e1, f1, g1, h1)

Output: {y0, y1, f0, g0, h0, e0}

a fault on a single instance is always present in the native values of our circuit. If
a single fault targets Γ, an effect will be visible in the native value of e. An effect
caused by a fault on a pnT or snsc processing shares of x and a will show an effect
on the native values of x (e) and a (f), since the value of the shares of a only
depend on the shares of x and pnT and snsc are a permutation on the shares. The
same argument is valid for pnT or snsc, processing shares of a and b, since Inv(b)
is just a bit-swap. Next, we have a series of pnT processing shares of a, b, and c.
Since the shares of c only depend on the shares of a and b, again a change in a
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native value is always visible in the output. The same is true for the last set of
pnT processing shares of x, c, and d, followed by a share-wise permutation Ξ.

However, in the context of using this S-box within the AES, we cannot further
use, e.g., e0, e1 as input for d0, d1 for another S-box, since e0 + e1 is not 0 in
general. For this reason, we remove shares from the input and the output of our
S-box in a similar spirit to Sugawara [Sug19] in Circuit 9.9.b, which we have also
formally verified using maskVerif (cf. Section 9.5.1).

The S-box in Circuit 9.9.b is still a permutation on its inputs as we show in
Appendix Figure 9.2. Since we do not have any restrictions on the inputs of the
S-box, we are free to reuse e0, f0, g0, h0 as inputs for another S-box calculation,
and hence, do not have to always generate fresh sharings of 0. In particular, this
allows for first-order side-channel secured implementations of AES without the
need for additional randomness in the masked S-boxes.

However, since we discard e1, f1, g1, h1 at the output of the S-box, we hinder
faults from propagating and thus, have to employ fault countermeasures on
S-box level for these values (respectively for their native values e, f , g, and h).
While this results only in a rather small overhead for implementations that use
duplication to protect against fault attacks, this might become quite expensive
for implementations that use time redundancy since one might have to store all
the values that need to be checked in the time redundant computation. However,
this cost can be significantly reduced by computing and storing a checksum or
fingerprint of these values instead. For instance, one might only store one set
of e0, e1, f0, f1, g0, g1, h0, h1 all initialized to 0 and always update those shares
by a linear checksum with the output e0, e1, f0, f1, g0, g1, h0, h1 of the S-box
before truncation. Note that by using a linear checksum this can be done for
e0, f0, g0, h0 and e1, f1, g1, h1 independently and thus secured against first-order
side-channel attacks. By computing this checksum for the original and redundant
computations, a fault will be detected by checking the output of the redundant
AES computations and the checksum value.

9.4 Protecting Arbitrary Circuits

Our approach from Section 9.2 works by constructing the masked circuit for a
cipher in a particular way with particular basic circuits. The cost of building
masked circuits this way varies depending on the specific S-box. When optimizing
with respect to other metrics, such as latency, other approaches may be more
suitable than the one introduced in Section 9.2, which is essentially serial. The
AES example in Section 9.3 also showed that additional error checks of interme-
diate values are helpful in cases when rewriting the entire cipher is hard. In this
section, we generalize this approach and explore how a general masked circuit
can be protected against SIFA by defining a suitable error detection circuit. The
goal is to take an existing masked circuit, whose basic circuits are for example
individual Boolean gates, and identify the relevant intermediate values to check
for errors in addition to the cipher output.
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x0 = Γ−1(e0)

x1 = x0 + S−1(y0 + y1)

e1 = Γ(x1)

t0 = 0

s4
sc(t0, e

H
0 , e

L
0 )

a0 = f0 + t0 + eH0 · (eL0 + eL1 )

a1 = a0

t1 = 0

s4
sc(t1, e

H
1 , e

L
1 )

f1 = a1 + t1 + eH1 · (eL0 + eL1 )

t0 = 0

s2
sc(t0, f

H
0 , f

L
0 )

b0 = g−1
0 + t0 + fH0 · (fL0 + fL1 )

b1 = b0

t1 = 0

s2
sc(t1, f

H
1 , f

L
1 )

g1 = (b1 + t1 + fH1 · (fL0 + fL1 ))−1

cH0 = hH0 + fL0 · (g0 + g1)

cH1 = cH0

hH1 = cH1 + fL1 · (g0 + g1)

cL0 = hL0 + fH0 · (g0 + g1)

cL1 = cL0

hL1 = cL1 + fH1 · (g0 + g1)

dH0 = Ξ−1(yH0 + 0x6) + eL0 · (c0 + c1)

dH1 = Ξ−1(yH1 ) + eL1 · (c0 + c1)

dL0 = Ξ−1(yL0 + 0x3) + eH0 · (c0 + c1)

dL1 = Ξ−1(yL1 ) + eH1 · (c0 + c1)

Figure 9.2: Inverse computation to show that Circuit 9.9.b is a permutation.
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We first recall the computation and fault model in order to introduce the gen-
eral criterion for single-fault SIFA-resistance in Section 9.4.1. In Section 9.4.2, we
show how to satisfy this criterion by extending a general masked implementation
with local error detection checks. Then, in Section 9.4.3, we identify necessary
steps and conditions such that global checks are sufficient. Finally, we discuss
how to extend this approach to higher-order attacks, where the adversary applies
multiple faults in each execution, in Section 9.4.4.

9.4.1 A General Criterion for Resistance against Single-
Fault SIFA

We consider the directed acyclic graph (DAG) induced by a masked cipher circuit
composed of basic circuits (in the sense of Section 9.1.3 that basic circuits are
incomplete). This computation graph consists of nodes that represent the basic
circuits f ∈ F and that are connected by edges that represent the intermediate
variables v ∈ V. We identify a node f with n input edges in(f) = (x1, . . . , xn)
and m output edges out(f) = (y1, . . . , ym) with the corresponding vectorial
Boolean function f : Fn2 → Fm2 , (x1, . . . , xn) 7→ (y1, . . . , ym) of the basic circuit.
We distinguish linear nodes, whose function is affine linear over F2, and nonlinear
nodes.

As defined in Section 9.1, we consider a powerful single-fault attacker who
may replace any node (y1, . . . , ym) = f(x1, . . . , xn) by an arbitrary faulted node
(y∗1 , . . . , y

∗
m) = f∗(x1, . . . , xn). We denote the difference between the values of an

edge v in the correct execution and v∗ in the faulted execution by δv = v ⊕ v∗,
similar to differential cryptanalysis, and write the resulting deviation in the
output variables of a node as a function δf of the input value:

(y∗1 , . . . , y
∗
m) = f∗(x1, . . . , xn) = f(x1, . . . , xn)⊕ δf(x1, . . . , xn) .

The fault δv may propagate to other nodes, and we call a node f ∈ F active in a
faulted execution if either δv = 1 for any input edge v ∈ in(f) or f is the faulted
gate modified by the attacker.

We denote the fault alert by ∆ and the set of variables it checks by V∆, i.e.,
∆ :=

∨
v∈V∆

δv =
∨
v∈V∆

(v⊕v∗). The SIFA attacker collects plaintext-ciphertext
samples with ∆ = 0, as they receive no output if ∆ = 1, and uses this condition
to derive information about the value of edges near the faulted node f∗.

Example. As an example throughout this section, Figure 9.4 lists the op-
erations of a masked implementation of the 3-bit S-box χ3 together with its
computation graph similar to [GSM17]. In the graph, Clone(·) nodes are repre-
sented by small bullets. In the circuit on the left-hand side, for compactness,
we omit calls (v, v′) = Clone(v) (i.e., variables named v′ are always clones) and
list up to two nodes per line. When combined with the error detector ∆ that
checks the output variables of the circuit, this implementation is susceptible to
single-fault SIFA with several possible fault locations. One of these is illustrated
in Figure 9.4: If a bitflip is induced as indicated (�) in the input a0 of the
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Clone(a0) node, then the condition ∆ = 0 implies b0 ⊕ b1 = b = 0. We want to
protect this implementation against single-fault SIFA by modifying the detector
(or the structure of the DAG).

x

y

y ← Not(x)

x1 x2

y

y ← Xor(x1, x2)

x1 x2

y

y ← And(x1, x2)

x x′

x

(x, x′)← Clone(x)

Ë

x

∆← ∆ ∨ (x⊕ x∗)

Figure 9.3: Nodes for basic circuits in the computation graph examples.

Input: (a0, a1, b0, b1, c0, c1)

t0 ← b′0 � c′1 ; t2 ← a′1 � b′1
t1 ← b′0 � c′0 ; t3 ← a′1 � b′0
t0 ← t0 � a′0 ; t2 ← t2 � c′1
r0 ← t0 � t1 ; t1 ← t2 � t3

t0 ← c′0 � a′1 ; t2 ← b′1 � c′1
t1 ← c′0 � a′0 ; t3 ← b′1 � c′0
t0 ← t0 � b′0 ; t2 ← t2 � a′1
s0 ← t0 � t1 ; r1 ← t2 � t3

�a0
t0 ← a′0 � b′1 ; t2 ← c′1 � a1
t1 ← a′0 � b0 ; t3 ← c1 � a0
t0 ← t0 � c0 ; t2 ← t2 � b1
t0 ← t0 � t1 ; s1 ← t2 � t3

Output: (r0, r1, s0, s1, t0, t1)

(a) Circuit, (v, v′) = Clone(v) omit-
ted

a0 a1 b0 b1 c0 c1t0t1 t2 t3

r0 r1 s0 s1 t0 t1

A0 N0t0 c1t0 A1a1t0 b1t0A2 N0t1 c0t0 A3a1t1 b0t1
X0 a0t0

X1c1t1
X2X0t0A2t0 X3X1t0 A3t0

A4 N1t0a1t2 A5b1t1 c1t2A6 N1t1a0t1 A7b1t2 c0t2
X4 b0t2

X5a1t3
X6X4t0A6t0

X7 X5t0 A7t0

A8 N2t0 b1t3 A9c1t3
a1t4Aa N2t1

b0t3 Abc1t4a0t3X8 c0t3
X9b1t4

XaX8t0Aat0
Xb X9t0 Abt0

�

(b) Computation graph

Figure 9.4: Bitflip in masked χ3 using 2 shares (resharing at the output omitted).

Criterion for Resistance against Single-Fault SIFA. Consider a masked
implementation with a detection-based countermeasure defined by an error
detector ∆ that only returns the result of the computation if ∆ = 0. We call the
implementation single-fault SIFA-resistant if each possible single fault is either
detected by ∆ or activates at most one nonlinear node.
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To see why this criterion is sufficient, consider a fault f∗. The attacker collects
plaintext-ciphertext samples with ∆ = 0, as they receive no output if ∆ = 1.
The samples satisfy one of the following two conditions:

• δy = 0, i.e., no bitflip happened because δf(x1, . . . , xn) = 0. The attacker
learns at most these values x1, . . . , xn. Since the implementation is masked,
this information is independent of the native input and output values and
thus does not allow the attacker to derive any information on the processed
data or keys.

• δy 6= 0, but the resulting bitflip(s) did not propagate to ∆. The criterion
implies that there is at most one active nonlinear node, i.e., either f or
another nonlinear node f ′ with some changed input v∗ = v ⊕ δv. The
attacker may exploit this differential information to learn the inputs of this
active nonlinear node, which are however independent of the native inputs,
and will not learn anything from the other, trivial differentials (of nonlinear
nodes with zero input difference or of linear nodes).

9.4.2 Protection against SIFA using Fine-Grained Detec-
tion

We now explore how a masked implementation can be extended with a suitable
detector ∆ in order to achieve a single-fault SIFA-resistant implementation.

Basic Idea. A straightforward, albeit not very efficient approach to satisfy
the single-fault SIFA-resistance criterion follows directly from its definition: We
can add local checks for inputs of nonlinear nodes. Assume for instance that we
duplicate the implementation and feed the same inputs to both instances. For
each nonlinear node f and each of its input edges v ∈ in(f), we add a check
to update the detector ∆← ∆ ∨ (v ⊕ v∗). We alternatively represent this as a
single checking node Ë in the DAG of a single instance of the implementation.
Then, a fault may activate a single nonlinear node f without detection by ∆ (if
the attacker faults either the nonlinear node itself or the preceding check), but it
cannot activate two nodes, since there are no paths without a check either from
any node to two nonlinear nodes or from one nonlinear node to another. Thus,
any single-bit fault in one of the two redundant computations or in the additional
circuitry for the detector ∆ are either detected or do not leak information to the
attacker.

Reducing Checks. It is, however, not necessary to check the inputs to all
nonlinear nodes separately. For example, in many circuits, most inputs to
nonlinear nodes in the DAG are directly cloned from the shares of the inputs,
i.e., the node input checks would check the same variable many times. Instead,
we want to check only once. In the DAG, this corresponds to a binary subtree
rooted in an input variable whose inner nodes are Clone(·) nodes and whose
leaves are other nodes. We refer to edges ending in leaves as twigs and to the
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other, inner edges as stems. The basic approach checks each twig ending in a
nonlinear node and thus precludes a fault that activates this twig in addition
to another parent or sibling edge in the DAG. Instead, it is sufficient to check
only those twigs whose sibling edge is also a twig (rather than a stem), and to
check only one of the two twigs. In other words, we check a variable that serves
as input to multiple nodes only once, right before its last use. We call this last
check the sink of (this part of) the tree, and it will be activated if more than
one twig in (this part of) the tree is active. Additionally, we also consider the
circuit output variables as sinks, since they will either be checked in the next
nonlinear layer, or propagate faults deterministically to the cipher output. As a
result, every edge v in the DAG is a safe edge that has a sink s such that there
is exactly one directed path v → s and it contains at most one nonlinear node.
This implies the single-fault SIFA-resistance criterion of Section 9.4.1.

In the χ3 example, by checking only such variables and only after they are
used for the last time, we can reduce the number of checks to 6 (instead of 24 in
the naive approach), i.e., once for each input variable. The result is illustrated in
Figure 9.5.

9.4.3 Ensuring Fault Propagation

In this section, we discuss under which conditions the fine-grained, local detection
of Section 9.4.2 can be replaced by global checks, similar to Section 9.2. We will
again use the concept of sink nodes as in Section 9.4.2, in the sense of nodes
whose activation will be detected by ∆. However, instead of implementing actual
local checks in the sink nodes, these sinks are virtual nodes whose effect on ∆
follows from properties of the cipher or masking approach.

First consider a uniform direct sharing of an invertible S-box. Since the
sharing is uniform, the masked circuit is also invertible. As a consequence, for
fixed resharing inputs, if any of the intermediate masked S-box output bits are
activated by a fault, this will activate at least one bit in the masked cipher output.
Thus, if the detection variables V∆ include all masked cipher output variables,
then the S-box output variables can serve as sinks – what remains to be done is
to ensure that each edge is a safe edge with respect to these sinks, and ideally,
to get rid of the requirement to perform redundant computations for the same
values of the shares. We first address the latter question. For simplicity, we
assume that all nodes except cloning nodes have a single output bit.

Instead of the individual shares of the S-box output bits, we can use the
native S-box output as sinks and add corresponding virtual nodes that compute
these as sums of the masked S-box outputs to the circuit. Any fault in this native
S-box output would activate at least one bit in the native cipher output, so the
detection variables V∆ can be reduced to the unmasked values and evaluated for
arbitrary resharing inputs.

Now, we still need to ensure that any edge v in the S-box circuit is a safe edge
with respect to one of these sinks s, i.e., that there is exactly one directed path
v → s and it contains at most one nonlinear node. This may be violated due to
cloning nodes (or, generally, nodes with multiple outputs) and due to composition
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Input: (a0, a1, b0, b1, c0, c1)

t0 ← b′0 � c′1 ; t2 ← a′1 � b′1
t1 ← b′0 � c′0 ; t3 ← a′1 � b′0
t0 ← t0 � a′0 ; t2 ← t2 � c′1
r0 ← t0 � t1 ; t1 ← t2 � t3

t0 ← c′0 � a′1 ; t2 ← b′1 � c′1
t1 ← c′0 � a′0 ; t3 ← b′1 � c′0
t0 ← t0 � b′0 ; t2 ← t2 � a′1
s0 ← t0 � t1 ; r1 ← t2 � t3

t0 ← a′0 � b′1 ; t2 ← c′1 � a′1
t1 ← a′0 � b′0 ; t3 ← c′1 � a′0
t0 ← t0 � c′0 ; t2 ← t2 � b′1
t0 ← t0 � t1 ; s1 ← t2 � t3

rs ← r′r � r′t ; Checks
r0 ← r0 � r′r ; s0 ← s0 � r′s
t0 ← t0 � r′t ; r1 ← r1 � rr
s1 ← s1 � rs ; t1 ← t1 � rt

Output: (r0, r1, s0, s1, t0, t1)

(a) Circuit, (v, v′) = Clone(v) omit-
ted

a0 a1 b0 b1 c0 c1t0t1 t2 t3 rr rs rt

r0 r1 s0 s1 t0 t1

Ë Ë Ë Ë Ë Ë

(b) Computation graph

Figure 9.5: Single-fault SIFA-resistant χ3 using 2 shares, with local checks. Checks
is short for the error detecting sub-circuits ∆ ← ∆ ∨ (v ⊕ v∗) for v ∈
{a0, a1, b0, b1, c0, c1}.
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of nonlinear nodes within an S-box. If the circuit contains such a composition
of nonlinear nodes, it needs to be decomposed into smaller, bijective circuits
with nonlinear depth 1 first, similar to Section 9.2. For cloning, we consider the
cloning subtree as in Section 9.4.2. We need to ensure that whenever two twigs
in this tree activate, a sink s activates. In particular, this implies that for every
cloning node b, there must be a sink s such that there is a unique path b→ s,
and this path contains only linear nodes. This may require restructuring the tree
such that at least one of the last two uses of a variable (the tree root) is in a
linear node, taking care that the modifications do not invalidate the security of
the masked implementation.

The approach is easy to apply to the χ3 example. We perform the following
modifications to the circuit from Figure 9.4 so that each edge is now a safe edge:

1. Delay r0 ← r0 ⊕ a0 and t1 ← t1 ⊕ c1 until the very end,
2. Delay r1 ← r1⊕a1, s0 ← s0⊕ b0, s0 ← s1⊕ b1, and t0 ← t0⊕ c0 (optional),
3. Move the resharing to preserve security of the masking.

The resulting circuit in Figure 9.6 shows similarities with the Toffoli-based
implementation of χ3 in Section 9.2, but there are still significant differences;
most notably, the necessity for resharing variables rr,rt and the lower depth of
the circuit in Figure 9.6.

9.4.4 Towards Protection against Multiple Faults

So far, we focused only on single-fault SIFA attackers and corresponding counter-
measures. Both the attack approach and the countermeasure with local checks
can be generalized to a multi-fault attacker who faults up to d basic circuits
(nodes).

Consider a circuit protected by dth-order masking with d+ 1 or more shares,
i.e., an attacker who learns up to d shares of any variable or observes up to
d basic circuits still does not gain any information on any native value. Let
the circuit be implemented with at least d + 1 redundant computations and
an error detector ∆ of at least d bits. For simplicity, assume that each of the
attacker’s d faults is a bitflip fault on one of the intermediate variables. We call
the implementation d-fault SIFA-resistant if each possible d-bit fault is either
detected by ∆ or activates at most d nonlinear nodes in total.

This criterion can, for instance, be satisfied by checking all inputs to nonlinear
nodes with the following construction. We use d + 1 redundant computations
and an n∆-bit error detector ∆ = (∆1, . . . ,∆n∆

), where n∆ = d for odd d and
n∆ = d+ 1 for even d. For each relevant input edge, we clone d times to update
d different error detector bits ∆i with the differences to all d other computations.
In other words, we compute all

(
d+1

2

)
differences in this bit between any two

redundant computations and ensure that for each computation, each of the d
comparisons activates a different detector ∆i. Distributing the

(
d+1

2

)
differences

to the various ∆i corresponds to an edge coloring problem with n∆ colors in the
complete graph with d+ 1 vertices, which is easy to solve. Then, activating k
nodes in one computation without detection by ∆ requires at least min(k, d+ 1)
faults: each node can either be activated without triggering ∆ by placing a
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fault between the check (with its cloning) and the nonlinear node; or it can be
activated while triggering d error detector bits ∆i, each of which requires either
a fault in the corresponding computation or faulting ∆i directly to eliminate.
Thus, in summary, at least d+ 1 faults would be required in order to activate
d + 1 or more nonlinear nodes and thus learn d + 1 shares of any variable to
deduce information on its native value.

Clearly, without further optimizations, this approach can only be practical
for very small protection order d. Since the size of each masked implementation
grows quadratically in d, and the checking cost per nonlinear node in this
implementation also grows quadratically in d, the construction is only of theoretic
interest for larger d.

9.5 Implementation

In this section, we describe our experimental results on correctness and perfor-
mance and discuss how well our circuit model matches the reality of hardware
and software implementations.

9.5.1 Formally Verifying the Masking of Toffoli-based Cir-
cuits

To gain additional trust in the soundness of our masking, we verified the circuits
using a tool-assisted approach. More specifically, we make use of maskVerif, a
tool by Barthe et al. [Bar+15] for formally verifying masking schemes. maskVerif
takes as input a (masked) circuit description that mainly consists of simple logical
operations such as And, Xor, or Not. The interface of the circuit can consist
of (shared) variables, as well as additional randomness. Given such a masked
circuit, maskVerif can verify if the implemented masking is indeed correct in a
specified leakage model and with a specified protection order. For more details
about maskVerif we refer to the original publication [Bar+15] and the tool’s
website [GBB].

We verified the correctness of the masking of our Toffoli-based circuits for
S-boxes from AES and Keccak using maskVerif. Therefore, we converted
the circuits from Circuit 9.8.b (5-bit χ) and Circuit 9.9.b (AES S-box) into a
maskVerif-compatible format and successfully verified their first-order security
in the probing model and in the presence of (propagation delay) glitches1. Note
that, for implementations in hardware and software, additional design consider-
ations are necessary in practice, which we discuss in part in Section 9.5.3 and
Section 9.5.4.

9.5.2 Benchmarks and Practical Evaluation

In this section, we give a preliminary evaluation of the costs of our proposed
countermeasure. We start with a theoretical estimation of the costs and then

1The used code is available at https://github.com/sifa-aux/countermeasures

https://github.com/sifa-aux/countermeasures
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we demonstrate the effectiveness and low overhead of our countermeasure by
implementing Keccak-f [200] on a low-end 8-bit AVR XMEGA128D4 micro-
processor as an example. We consider both our Toffoli-based masked S-box
(Circuit 9.8.b) and a traditionally masked S-box using domain-oriented masking
(DOM) [GSM17]. We then use these implementations for comparing their runtime
and code size and for verifying the SIFA-protection of Circuit 9.8.b in a practical
evaluation.

Cost Estimation. First, let us discuss protection against single-fault SIFA.
The costs of our countermeasures can be roughly split into two parts: the cost of
masking and the cost of redundancy. Let us first start with the cost of redundacy.
Since we perform plain double execution, we get roughly a factor two of overhead.
This overhead is in terms of space due to roughly the doubled number of registers
needed to store the state and might be in time, e.g., in software implementations
where everything has to be executed twice, or in hardware if designers decide
to not duplicate the whole circuit, but perform time redundancy instead. So, if
we consider that masking is needed anyway and our masking strategies are not
worse than common strategies, we get the same overhead that would be needed
for fault protection by duplication.

Now, let us take a look at the efficiency of our masking proposal. Let us
start with the way of masking that we introduce in Section 9.2 and Section 9.3.
This way of masking relies on describing a cipher in terms of incomplete permu-
tation circuits, and hence, mainly relies on masked versions of the Toffoli gate
and related constructions. As it can be seen in Figure 9.1, such a description
comes even quite natural in the case of AES and does not incur a prohibitive
increase in the number of operations needed to compute an S-box. In addition,
those masked implementations are secure without the need of online random-
ness. As an example, let us have a look at Keccak’s S-box and compare a
DOM implementation [GSM17] with masking the Toffoli-based description given
in Circuit 9.8.b.

Let us start with the DOM implementation of Keccak’s S-box. To mask
this with two shares, we need 5 DOM AndNots plus 10 Xors. Hence, in total,
we roughly need 20 2-bit Ands/AndNots, 30 2-bit Xors, and 5 random bits for
calculating Keccak’s S-box. In contrast, in Circuit 9.8.b, we need 5 calls to
pχS plus two Xors. Thus, we have a total of 20 2-bit Ands/AndNots, 22 2-bit
Xors, and 0 random bits for calculating Keccak’s S-box. Hence, in terms of
operations, the Toffoli-based version has a slight advantage. However, we need
storage for one more share at the input. We will see how this compares in a
practical implementation in Section 9.5.2.

The overhead incurred by following the strategy of Section 9.4 depends on a
number of factors. We focus again on the DOM implementation of Keccak’s
S-box (with 20 Ands/AndNots, 30 Xors, and 5 resharing bits), both as a point
of comparison and as the target circuit for the countermeasure. First consider
the approach with local checks from Section 9.4.2, Figure 9.5. On top of the
2×20+2×30 = 100 gates for duplicate execution of this S-box, our countermeasure
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adds 10 Xors and 10 Ors for the checking circuit, plus an additional state of 1
bit globally. It is necessary to either execute both duplicate instances in parallel
or invest additional space to keep track of the checked intermediate values.
Other metrics, such as the circuit depth, remain essentially unchanged. With the
improvements for global checks from Section 9.4.3, Figure 9.6, the countermeasure
comes with zero overhead compared to the basic DOM implementation with
simple redundancy.

When considering the ideas from Section 9.4.4 for higher-order protection, the
overheads are more substantial. When considering a straightforward application
without any optimizations, this can be estimated as follows when focusing only on
nonlinear gates (which are responsible for the overhead). For protection against
d-fault SIFA, we need a masked implementation of dth order with (at least)
d + 1 shares, as well as d + 1-fold redundant execution with an error detector
of n∆ ∈ {d, d+ 1} bits. With the higher-order DOM approach [GSM17], each
And-gate of an unprotected S-box circuit corresponds to (d + 1)2 Ands plus
(d + 1)2 Xors in a masked circuit and requires up to d · (d + 1)/2 resharing
bits. These gates are duplicated d + 1 times for redundancy, resulting in a
total of 2 × (d + 1)3 gates (Ands and Xors). Our countermeasure adds a
check (1 Xor plus 1 Or) for each of the inputs of these Ands, for a total of

(d+1)2×2× (d+1)·d
2 ×2 = 2d× (d+1)3 gates. This corresponds to an overhead of

a factor of d in the number of gates compared to DOM masking with redundancy
(only for the nonlinear gates, the linear gates add no overhead). We expect that
for concrete circuits, significant optimizations similar to Section 9.4 are possible.
Still, we consider this approach to be primarily of theoretical interest.

Practical Benchmarks. To keep the comparison as fair as possible, we opted
to take the compact C implementation of Keccak-f [200] from the eXtended
Keccak Code Package [Ber+a] as the basis for our implementations. We then
simply duplicated all linear operations and replaced the S-box by Toffoli/DOM
masked assembly versions2. The resulting performance numbers are hence not
necessarily representative for the maximum performance on 8-bit platforms but
very representative for a direct comparison of the two S-box implementations.
The resulting numbers for our comparison are shown in Table 9.2. We measured
the runtime without the runtime cost of a PRNG and discuss the needed amount
of random bits as a separate metric. From the presented numbers, it is easy to
see that our Toffoli-based S-box is on par with the DOM variant in terms of
runtime, and binary size. Please note that the AVR XMEGA128D4 has not been
designed for cryptographic purposes, and hence, might allow for side-channel
attacks due to violations of the seperation of the shares. However, what we show
in the next section is that our proof-of-concept implementation still provides
protection against single fault SIFA.

Evaluation of SIFA Resistance. We also evaluated the SIFA resistance of
our designs by means of simulated fault inductions and a practical evaluation

2The used code is available at https://github.com/sifa-aux/countermeasures

https://github.com/sifa-aux/countermeasures
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Table 9.2: Comparison of computing 18 rounds of Keccak-f [200] using different
implementations. Numbers do not include generation of randomness: The
DOM approach requires 5 random bits per S-box (200+200×18 = 3800 bits
in total), which can be reduced with techniques such as Changing of
the Guards. The Toffoli approach requires just 200 + 40 in total when
implemented as proposed for Circuit 9.8.b.

Implementations
Runtime w/o PRNG Binary Size

(Clock Cyles) (Bytes)

Empty main.c -Os 0 5 385

Compact C with ASM S-box -Os 49 371 6 939
Masked with ASM DOM S-box -Os 107 617 9 648
Masked with ASM Toffoli S-box -Os 109 753 9 632

Compact C with ASM S-box -O3 38 455 9 811
Masked with ASM DOM S-box -O3 88 332 12 434
Masked with ASM Toffoli S-box -O3 87 426 12 385

on an AVR XMEGA128D4 microprocessor using clock glitches. The evaluation
methodology is the same as the one that was used in Section 8.2.2. We take
our Toffoli masked assembly S-box implementation (the same that is used in the
benchmarks), target one instruction with a fault induction, call the S-box with
every possible input, and check whether the correct unmasked S-box outputs
follow a uniform distribution or not. This procedure is then repeated for every
instruction within the S-box.

According to our practical evaluation, where clock glitches cause effects
like memory corruption or instruction skips, no instruction within our S-box
implementation is susceptible to SIFA. This result is backed up by our simulated
fault induction experiments where we simulate the effect of stuck-at faults and
bitflips for which we do not own a set-up to reproduce them in practice.

9.5.3 From Abstract Models to Software Implementations

In Section 9.1, we have introduced an abstraction model and explicitly defined
what faults are in this model. When considering the implementation of our
circuits in software, it would seem that even in the most trivial implementations,
it is ensured that basic circuits are nicely separated and hence, fault attacks
and also side-channel attacks cannot be a threat. However, the reality is more
subtly nuanced. Hence, we want to discuss what has to be considered when
implementing our circuits in real software implementations and which faults on
software implementations are covered by considering faults on basic circuits.

As mentioned in Section 9.1, we consider circuit faults in a single basic
circuit instance. This directly corresponds to faults in software that directly
manipulate values of variables stored in registers of a CPU [Sel+18], change a
variable in memory before it is loaded, or even target the load of a variable from
memory [Col+19]. Furthermore, it also covers cases where a fault, like a clock
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glitch, changes the outcome of a computation. However, what is notably only
partially covered is the case of an instruction skip, meaning that an operation
is not performed and the register values are kept untouched. This can lead to
cases where the boundaries between basic circuits are violated. This is especially
a threat if an implementation of a basic circuit uses registers in addition to the
registers storing the shares in order to store results of intermediate computations.
However, potential negative effects of a clock glitch can be mitigated by always
initializing an additional register to 0 before use, or by performing instructions
on the shares in place (e.g., a0 = a0 � b0) whenever possible.

What is not covered by our considerations are faults that change the execution
flow of a program to a greater extent than skipping the single instructions, like
manipulating the program counter. Furthermore, we do not consider the use of
loops and conditional statements apart from their usage in detecting faults. What
is also not considered are faults that change the operands used in operations. All
these faults have in common that they may totally change the program that is
executed to a point where the key is just put out in plain. Such faults have to be
prevented by other means.

Furthermore, our model considers a single permanent fault, e.g, permanently
faulting a lookup table, as multiple faults. However, we advise not to use
implementations with lookup tables.

A notable case that is not considered in our abstraction are Load and
Store instructions from memory to registers. In the simplest case, there are
enough registers to store all necessary variables so that during a cryptographic
computation, no Loads and Stores are needed. However, if this is not the case
and a variable has to be reloaded, this might cause problems. For instance, let us
consider the circuit shown in Circuit 9.5.b. Here, b0 is just read and never written.
So if we do not consider fault protection, it can be assumed that the register b0
can just be overwritten, since the value can be reloaded from memory anyway. If
we consider our fault protection mechanisms, this means that a faulted value in
register b0 might vanish, which in turn would allow SIFA again. To prevent this
in general, we have to assume that values are changed and write them back to
memory if their use is later required.

Furthermore, registers have to be properly initialized before usage. The
problem with uninitialized registers is that shares can be combined, which leads
to exploitable leakage, or, in the case of a clock glitch, to an unmasked use of a
variable. Typically, the problem with uninitialized registers can be easily solved
by always writing 0 to them before the result of a computation is stored.

Finally, we want to note that modern ciphers can usually be implemented
in a bit-sliced manner, meaning that for a system using x-bit registers, a single
computation, and thus, a single fault like a clock glitch leads to a single fault in
up to x S-boxes. For ciphers that consist of layers applying many small bijective
S-boxes in parallel to the state, we can define basic circuits to work on bit-vectors
instead of single bits. This implies that injecting a single fault in several of these
parallel S-boxes in a single layer causes no issues with respect to our strategy
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of Section 9.2, since these faults will correspond to a single circuit fault of an
incomplete circuit.

9.5.4 From Abstract Models to Hardware Implementa-
tions

In general, our abstraction as circuit lends itself quite naturally to dedicated
hardware implementations, but requires additional considerations. In particular,
one needs to take into account the effects of glitches. Glitches are the result
of the behavior of the physical layout and are thus unavoidable. Since signals
do not propagate evenly through a hardware-circuit (due to differences in the
capacitance of wires, different wire lengths, manufacturing imperfections, et
cetera.) the output of gates could change (glitch) several times before reaching a
stable logic state. In the context of a fault induction, also faults can “glitch”. As
a result, in each clock cycle there is sequence of transitional states in the physical
circuit that depend on combinations of variables that differ from the ones that
the circuit should finally compute.

These effects imply that the behavior of a hardware-circuit cannot be con-
trolled by just using combinatorial logic gates. Using registers limits these
transitional effects in the sense that it puts barriers between combinatorial blocks.
Registers stabilize a signal before entering the next logic gates through a separa-
tion in different clock cycles. The cost for the gained control over the signals is
not only the increased gate count, but also the evaluation of the hardware-circuit
requires more clock cycles and thus, the latency increases.

Hence, when instantiating our abstract circuits in hardware, registers are
required at several places to separate the basic circuits and ensure resistance to
glitching effects. This is no different for other masking methods. For instance,
TI implementations [NRR06; NRS11] use registers after each uniformly shared
function and the DOM scheme [GMK16] uses a register stage in each shared
nonlinear gate to hinder security-critical glitches from propagating into the next
shared function which could violate the security requirements.

Figure 9.7 shows a masked Toffoli gate in hardware which already includes the
required registers (FF) for a glitch resistant first-order side-channel protection.
Furthermore, this variant also resists single-fault SIFA attacks. The upper two
registers are required to hinder the propagation of glitches that could violate the
side-channel resistance of the implementation. The lower four registers are the
relevant ones for protection against SIFA. Again, no share can be used twice in
two different basic circuits within the same clock cycle. This would be the case
when switching the order of the multiplication of b1 and c1 with b1 and c0, for
instance, because a single fault of the input c0 would affect both multiplications
with the two shares of b.

A secure hardware variant of the threshold Toffoli gate is shown in Figure 9.8.
The registers ensure that a single fault cannot influence all shares of variables
that are fed into nonlinear And gates without detecting it at the output.
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9.6 Conclusion

In this chapter, we have proposed two different approaches to counteract SIFA
on an algorithmic level. First, we show that by relying on Toffoli gates for the
nonlinear operations in the implementation of masked ciphers, we can construct
circuits where a single fault in the computation of the cipher is either (1) not
exploitable by SIFA or (2) detectable via redundant computations that are
typically implemented to cope with other fault attacks like DFA. This approach
can be implemented efficiently, and its applicability was shown for 3-bit, 4-bit,
and 5-bit S-boxes. Additionally, we show how this approach could be extended to
the AES S-box using the Toffoli gate for bigger fields and fine-grained detection
on S-box level that can be implemented efficiently for implementations using
duplication and is also quite efficient for implementations using time-redundancy
when using a linear checksum. We verified the correctness of the masking of
our Toffoli-based circuits for S-boxes from AES and Keccak using maskVerif.
Finally, we show how this approach based on fine-grained detection can be
generalized to protect arbitrary masked circuits, and how it can be extended to
cope with multi-fault SIFA, albeit at a higher implementation cost.
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Input: (a0, a1, b0, b1, c0, c1)

rs ← r′r � r′t
t0 ← b′0 � c′1 ; t2 ← a′1 � b′1
t1 ← b′0 � c′0 ; t3 ← a′1 � b′0
r0 ← t0 � r′r ; t1 ← t2 � r′t
r0 ← r0 � t1 ; t1 ← t1 � t3

t0 ← c′0 � a′1 ; t2 ← b′1 � c′1
t1 ← c′0 � a′0 ; t3 ← b′1 � c′0
s0 ← t0 � r′s ; r1 ← t2 � rr
s0 ← s0 � t1 ; r1 ← r1 � t3

t0 ← a′0 � b′1 ; t2 ← c′1 � a′1
t1 ← a′0 � b′0 ; t3 ← c′1 � a′0
t0 ← t0 � rt ; s1 ← t2 � rs
t0 ← t0 � t1 ; s1 ← s1 � t3

r0 ← r0 � a0 ; t1 ← t1 � c1
s0 ← s0 � b0 ; r1 ← r1 � a1
t0 ← t0 � c0 ; s1 ← s1 � b1

Output: (r0, r1, s0, s1, t0, t1)

(a) Circuit, (v, v′) = Clone(v) omit-
ted
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Figure 9.6: Single-fault SIFA-resistant χ3 using 2 shares, with global checks.
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Figure 9.7: Masked and single-fault SIFA-protected Toffoli gate in hardware.
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10
Conclusion and Outlook

Don’t wish it were easier, wish you
were better.

Chief - Animal Crossing

In this thesis, we have analyzed and advanced the state-of-the-art of implementa-
tions security by presenting new attack and defense techniques that are relevant,
e.g., to cryptographic algorithms currently competing in NIST’s standardization
processes for lightweight or post-quantum cryptography.

In the first part, we have focused on passive implementation attacks on recent
proposals for quantum computer secure encryption schemes. We have presented
a power analysis attack capable of recovering the complete private key of a
(higher-order masked) implementation of a lattice-based encryption scheme from
a single power trace. Our attack clearly shows that, even though lattice-based
cryptography is vastly different from established RSA and ECC constructions,
profiled attacks should not be neglected, and masking countermeasures alone
are not necessarily sufficient. In the subsequent chapter, we have presented an
improved version of this attack that requires a significantly less powerful attacker.
The practicality of this work is demonstrated by performing it on an off-the-shelf
microprocessor.

In the second part of this thesis, we have shifted our focus to active imple-
mentation attacks and present statistical ineffective fault attacks (SIFA), a fault
attack technique capable of circumventing typical algorithmic countermeasures
that were previously believed to offer sufficient protection against fault attacks.
A particularly interesting property of SIFA is the fact that, from an attacker’s
perspective, only very limited knowledge about the attacked device is required.
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We have also presented algorithmic defense mechanisms that can prevent SIFA
with fairly low overheads and, coincidentally, also allow the construction of par-
ticularly efficient masking schemes to counteract certain types of power analysis
attacks.

Even though implementation security already has a long history that reaches
back about two decades, substantial progress has been and is still being made. In
the following, we want to share our perspective on how this research field might
progress over the next few years and what questions remain unanswered after
this thesis.

Performance and Cost. From an industry perspective, one of the main
challenges with implementation security is the accompanied overhead, in terms
of area/code size and runtime, that can increase by several orders of magnitude
compared to plain implementations [Bel+20]. The importance of efficiency
is also reflected by the NIST’s currently ongoing standardization process for
lightweight cryptography [NIS18]. Here, the goal is to select future standards for
authenticated encryption that should not only outperform current AES-based
schemes but also allow the addition of countermeasures against implementation
attacks at low cost. One way to approach this problem is to use cryptographic
schemes based on lightweight building blocks that are comparably cheap to
protect against implementation attacks. Nearly all candidates in the final round
of the standardization process follow this approach, e.g., by using cryptographic
building blocks with low-degree nonlinear layers that keep the overhead of
masking comparably low. Another approach to improve efficiency involves the
usage of cryptographic modes that can either reduce the attack surface of certain
implementation attacks or prevent them entirely. The attack surface of DPA
attacks can, for example, be reduced by using cryptographic modes allowing
leveled implementations that restrict the need for algorithmic countermeasures
to only certain parts of a cryptographic computation [PSV15; Dob+21]. Entire
mode-level protection against certain attacks can be achieved, e.g., by using
GGM tree constructions [GGM86; Dob+20] that essentially restrict the attacker
to only observing the processing of two different inputs under the same key, which
prevents attacks like DPA or SIFA. It will be interesting to see how much further
efficiency can be improved, possibly using entirely new ideas that have not yet
been explored by the research community.

Open Hardware. One quite recent trend in the semiconductor industry is
a push towards open hardware, as shown by projects like OpenTitan [Ope]
or Caliptra [Cal] that are backed up by big companies such as AMD, Google,
Microsoft, and Nvidia. The goal of these projects is the design of (mostly)
open-source root-of-trust chips that can be used, e.g., to realize smart cards,
trusted execution environments, or hardware security modules. While today’s
cryptography already follows Kerckhoff’s principle – a cryptosystem should be
secure even if everything about the system, except the key, is public knowledge
– the same cannot be said about their concrete implementations in the context
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of implementation attacks. Here, concrete knowledge about the design of a
cryptographic device can certainly help to either improve the performance or
significantly reduce the practical effort of implementation attacks, especially in
the case of profiled power analysis and fault attacks. To compensate for that, a
higher baseline of defense will be needed for open devices if they want to provide
the same security as their closed-source counterparts. Nevertheless, one advantage
of open devices in this context is the ability of, e.g., research communities to
study them in a level of detail that was not easy to do before. On top of that,
an accompanying (mostly) open ecosystem for the design/manufacturing of such
devices may also give new research opportunities or increase trust in a product
from a consumer perspective. It will be interesting to see how “open” such
devices can be and what security guarantees they can provide in a couple of years
when they are projected to first enter the market.

Formal Verification. The topic of formal verification in the context of im-
plementation security is still a relatively young research field. One particularly
interesting application of formal verification methods is for checking the correct
separation of shares during a masked cryptographic computation on hardware
circuits. Pure algorithmic correctness of a masked cipher description is gener-
ally not sufficient for practical security due to physical defaults of hardware
circuits like signal transitions/glitches that can temporarily leak information
about multiple shares. Formal verification methods can help identify such issues
already at a pre-silicon stage, e.g., by analyzing the netlist of a masked hardware
circuit [Blo+18; Bar+19; Gig+21; KSM20]. One current limitation of such tools
is scalability, as they are often based on model-counting techniques that generally
do not scale well with circuit size. Nevertheless, they can already be used to
make strong arguments about the security for one/few rounds of a masked cipher,
which generally gives a strong indication of the security of the entire masked
cipher design. Alternatively, if masking-related security statements about an
entire masked cipher design are desired, one can either check somewhat weaker
properties [MM22], or make use of dedicated composable masking schemes that
are efficient to verify (also regarding physical defaults) but come at the cost
of increased area/code-size, energy, or runtime requirements [Bar+16; Fau+18;
CS20]. It will be interesting to see how much further the performance of generic
masking verification tools can be improved and, in contrast, how much the
overhead of composable masking schemes can be reduced.
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A
Descriptions of Selected Cryptographic

Algorithms

We now give descriptions of cryptographic algorithms that are frequently used
as discussion examples in Part I and Part II respectively. In Appendix A.1
we describe the symmetric block cipher Aes. In Appendix A.2 we describe a
asymmetric lattice-based encryption scheme that Crystals-Kyber [Bos+18a]
is based on.

A.1 The Advanced Encryption Standard

The Advanced Encryption Standard (AES), designed by Joan Daemen and
Vincent Rijmen [DR20], is an iterated block cipher that consists of the repeated
applications of round transformations on a state. AES has a fixed state size of
128 bits, represented as 16 bytes x0, x1, . . . , x15 that are arranged in a 4× 4 array
as follows: 

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15


While AES supports key sizes of 128, 192, or 256 bits, we restrict our description
to the AES-128 variant using a 128-bit key. The description itself is based on
the one given in [TMA11b].

For basic block cipher operation the AES state is first initialized with 16
bytes of plaintext that is then processed together with the key to produce 16
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bytes of corresponding ciphertext. This processing involves 10 rounds of repeated
application of four round functions in the following order:

1. SubBytes - The SubBytes function is a nonlinear permutation consisting
of an S-box applied to the bytes of the state. Each byte of the state matrix
is replaced by its multiplicative inverse, followed by an affine mapping.
Thus, the input byte x is related to the output y of the S-box by the
relation, y = Ax−1 +B, where A and B are constant matrices.

2. ShiftRows - The ShiftRows function is a byte-wise permutation of the
state that rotates rows with indices {0, 1, 2, 3} by {0, 1, 2, 3} elements to
the left respectively.

3. MixColumns - The MixColumn function is a linear permutation operating
on the state column by column. Each column of the state matrix is
considered as a 4-dimensional vector where each element belongs to F(28).
A 4×4 matrix M whose elements are also in F(28) is then used to map this
column into a new vector. This operation is applied on all the 4 columns
of the state matrix. Here, M and its inverse M−1 are defined as:

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 M−1 =


14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14


4. AddRoundKey - Each byte of the state is Xor-ed with a byte from a

corresponding array of round subkeys.

Besides that, AES features an additional initial round consisting only of Ad-
dRoundKey, and skips the MixColumns operation in round 10. The round keys
used within AddRoundKey are derived from the main key using the so-called
AES KeySchedule that performs SubBytes and Xor operations to generate the
next round key from the current one. In case of decryption operation, one can
essentially perform all previously described transformations in reverse to derive
a 16-byte plaintext from a 16-byte ciphertext and the key.

A.2 Lattice-Based Public-Key Encryption

We now give a simplified description of the RLWE-based public-key encryption
scheme proposed by Lyubashevsky, Peikert, and Regev [LPR10]. It operates with
polynomials over the ring Rq = Zq[x]/〈xn + 1〉 and is parameterized by the tuple
(n, q, σ). n denotes the dimension of the polynomials, q is the modulus for the
base field Zq, and σ is the standard deviation for a discrete Gaussian distribution
Dσ. We use boldface lowercase letters to interchangeably denote polynomials in
Rq as well as their respective coefficient vectors.

Key generation. For key-pair generation, two polynomials r1 and r2 are sam-
pled from the discrete Gaussian distribution Dσ. Next, the public key p is
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computed as p = r1 − ar2. The uniformly-random polynomial a is either
a global domain parameter or is also included in the public key. r2 is the
private key, r1 is simply discarded.

Encryption. First, the plaintext m is encoded as m ∈ Rq. In a simple variant
of encoding, the bits of m are simply multiplied by q/2. Then, three
error polynomials e1, e2, e3 ∈ Dσ are sampled. The ciphertext is a pair of
polynomials (c1, c2) with c1 = ae1 + e2 and c2 = pe1 + e3 + m.

Decryption. The private key r2 is used to compute m? = c1r2 + c2. The
original message m is then retrieved by feeding m? to a decoder. There,
one computes the distance of each coefficient in m? to q/2. If this distance
is < q/4, then the decoder outputs 1, otherwise 0.
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[Bar+19] Gilles Barthe, Sonia Beläıd, Gaëtan Cassiers, Pierre-Alain Fouque, Ben-
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[Bos+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. “Frodo:
Take off the Ring! Practical, Quantum-Secure Key Exchange from LWE.”
In: CCS. ACM, 2016, pp. 1006–1018.
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Schläffer. “Ascon v1.2: Lightweight Authenticated Encryption and Hash-
ing.” In: J. Cryptol. 34.3 (2021), p. 33.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[DR20] Joan Daemen and Vincent Rijmen. The Design of Rijndael - The Advanced
Encryption Standard (AES), Second Edition. Information Security and
Cryptography. Springer, 2020.

[Dro+89] Feike C. Drost, Wilbert C. M. Kallenberg, D. S. Moore, and J. Oosterhoff.
“Power Approximations to Multinomial Tests of Fit.” In: Journal of the
American Statistical Association 84.405 (1989), pp. 130–141.

https://ascon.iaik.tugraz.at/files/asconv12.pdf
https://ascon.iaik.tugraz.at/files/asconv12.pdf


Bibliography 186
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Attacks on AES with Faulty Ciphertexts Only.” In: FDTC. IEEE Com-
puter Society, 2013, pp. 108–118.
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